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Abstract. The paper describes a new experimental procedure for the determination of the curves 

relating the equivalent stress and equivalent strain of sheet metals by means of the hydraulic bulge 

tests through elliptical dies. The procedure is based on an analytical model of the bulging process 

and involves the measurement of only two parameters (pressure acting on the surface of the 

specimen and polar deflection). 

Introduction 

The hydraulic bulge test through elliptical dies is used for obtaining different load paths in the polar 

region of the specimen. The adjustment of the load path is achieved by modifying the ellipticity of 

the die. There are only few papers dealing with the determination of the hardening curves in the 

more general case of the bulge tests with non-circular dies. Yousif [1] investigated the geometry of 

the deformed specimen and the fracture mode of the sheet metals subjected to bulging with elliptical 

dies. He obtained stress-strain curves and forming limit diagrams for brass, cooper and mild steel. 

Banabic [2] developed analytical models for the computation of the pressure-time relationship for 

the bulging trough elliptical dies of both strain hardening and superplastic materials. Ragab [3] 

determined experimental curves relating the equivalent stress and the equivalent strain of sheets 

using dies with circular, rectangular and elliptical apertures. Rees [4] presented a theoretical 

analysis of the polar deformation during the bulging through elliptical dies. He validated the model 

by experiments that were focused on examining the equivalence between the polar flow in the case 

of the bulge test and the plastic flow in uniaxial tension. The authors of this paper previously 

developed a methodology for a more accurate determination of the hardening curves in the case of 

the bulge test through circular dies [5, 6]. Their experimental procedure is based on an improved 

version of Kruglov’s formula [7] used for evaluating the current values of the polar thickness. 

This paper presents an experimental methodology for the determination of the hardening curves 

by means of the hydraulic bulge tests through elliptical dies. The procedure is based on an analytical 

model of the bulging process and involves the measurement of only two parameters (pressure acting 

on the surface of the specimen and polar deflection). 

Analytical model of the bulging process 

In the case of the bulge test, a disc shaped specimen is firmly clamped under a ring at the top of a 

hydraulic cylinder. The specimen is then deformed by a uniformly increasing pressure applied on its 

bottom face. Throughout this study, the free surface of the specimen is schematized as shown in 

Figure 1. More specific, the deformed region is approximated by a rotational ellipsoid (the 

rotational axis is horizontal in Figure 1). As a consequence, the profile of the deformed specimen is 

assumed to be elliptic along the major axis (b) and circular along the minor axis (a) of the die hole.  
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Fig.1. Geometry of the specimen subjected to bulging through a die with elliptical aperture 

 

Principal axes of the ellipsoid. In the geometric schematization adopted by the suthors (Fig. 1), Ai 

(i=1,2) and the fillet radius of the die (r) are constant parameters defined by the design of the 

bulging device, and h is the current value of the polar deflection measured during the experiment. 

The quantities that must be indirectly determined are the semi-axes of the ellipsoid used to 

approximate the deformed surface of the specimen: ai (i=1, 2, 3). The curve drawn at an offset 

distance r from the elliptic arc PTi (i = 1,2) is defined by the following equation: 
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As shown in Figure 1, the points ),0(' 3 raP +  and ),( 3 hraAC ii −+  belong to this offset curve. By 

consequence, their coordinates must verify Eq. (1): 
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Eq. (2) leads to the following relationship between the semi-axes ai (i=1, 2): 

1)/()(/ 2121 ≥=++= kraraAA ,                                                                                                    (3) 

(k = A1 / A2 is a constant parameter of the bulging device). Due to the fact that the profile of the 

deformed specimen is assumed to be circular along the minor axis of the die hole, the semi-axes a2 

and a3 are equal to each other: 32 aa = . Under such circumstances, one may deduce from Eq. (2) 

written for i=2 the following formula that allows the calculation of the minor semi-axes a2 and a3: 
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In the next stage, Eqs. (3) and (4) lead to the relationship defining the major semi-axis: 
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Polar radii of the specimen. When written for 1=i , Eq. (1) provides the function describing the 

profile of the deformed specimen along the major axis of the die hole: 

( )
2

2 3
3 3 1

1

a r
x a r x

a r

 +
= + −  + 

.                                                                                                       (6) 

The polar radius of the elliptic arc defined by Eq. (6) can be evaluated as follows: 
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After replacing the semi-axes 3a  and 1a  defined by Eqs. (4) and (5), respectively, Eq. (7) becomes 
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In the same manner, when written for 2=i , Eq. (1) provides the following relationship that defines 

the other curvature radius at the pole: 
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The angle spanned by the circular profile of the specimen ( 2α  - see Figure 1) can be evaluated in 

the standard manner [5]: 
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Polar thickness. In this paper, the polar value of the meridian strain associated to the circular 

profile of the specimen is evaluated using Kruglov’s formula [7]: 

( )222 sin/ln ααε = .                                                                                                                      (11) 

As concerns the other meridian strain (associated to the elliptic profile of the specimen), its 

calculation is performed by adopting the hypothesis 

1 2ε βε= ,                                                                                                                                      (12) 

where 

( ) ./ 12 const≅= ρρβ ,                                                                                                                  (13) 

is considered a constant ratio for a given geometry of the die hole. The experimental data plotted on 

the diagram in Figure 2.b shows only a slight variation of β , thus confirming the validity of the 

assumption .constβ ≅  After making use of the law that enforces the volume preservation in 

connection with Eq. (12), one obtains the following formula for the thickness strain at the pole: 

( ) ( ) 2213 1 εβεεε +−=+−= .                                                                                                        (14) 

The current value of the polar thickness can be thus obtained from the relationship 
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where is the initial thickness of the specimen (nominal thickness of the sheet metal). 

Equivalent strain and stress. The polar values of the principal stresses are evaluated using 

Timoshenko’s formulas [8]: 
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( 1σ  and 2σ  are the meridian and circumferential stresses, respectively). Eqs. (16) lead to the 

following relationship between 1σ  and 2σ : 

)2/(21 βσσ −≅ .                                                                                                                         (17) 

The significance of the equivalent stress (σ ) and equivalent strain (ε ) can be deduced from the 

plastic dissipation law: 

1 1 2 2 .σ ε σ ε σ ε+ = �� �                                                                                                                        (18) 

Eqs. (12) and (13) lead to the approximation 1 2.ε βε=� �  After combining this relationship and Eq. 

(17) with Eq. (18) one obtains 
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In accordance with Eq. (17), the equivalent stress and equivalent strain can be defined as follows: 
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One may notice that Eqs. (20) reduce to 22ε ε=  and 2σ σ=  for 1=β , being thus consistent with 

the formulas used in the case of the hydraulic bulging through circular dies. Eqs. (16) and (13) 

provide the following relationship for the equivalent stress: 
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The hardening curve relating the equivalent strain and the equivalent stress can be constructed 

using Eqs. (20) and (21). These relationships are valid for the hydraulic bulging with dies having 

both elliptical and circular holes. Eqs. (20) and (21) need the experimental determination of only 

two process parameters: current value of the pressure acting on the bottom face of the specimen p 

and the associated polar deflection h. 

Experiments 

The experiments consisted in hydraulic bulge tests performed on specimens cut from a DC04 steel 

sheet having the nominal thickness of 0.85 mm. Three ellipticity ratios were used: (a / b): 0.6 (48 / 

80); 0.8 (64 / 80), and 1 (circular hole with a diameter of 80 mm). The fillet radius of the die was 

4=r  mm in all cases. The current values of the pressure and polar height were continuously 

recorded using an ARAMIS system. The estimations of the polar radius provided by the ARAMIS 

system for different stages of the bulging process were used for comparison with the values of the 

radius 2ρ  obtained from Eq. (9). The circumferential strains measured by the ARAMIS system 

along the minor axis of the die hole were also replaced in Eq. (20) for obtaining different points of 

the curve equivalent stress – equivalent strain. 

Results 

Bulge radius and polar height. Figure 2 shows the evolution of the polar radius 2ρ  as a function 

of the polar deflection h, for different values of the ellipticity ratio. One may notice that the results 

obtained using the analytical formulas deduced in this paper are in good agreement with the 

experimental data provided by the ARAMIS system. Figure 3 presents the evolution of the curvature 

ratio β as a function of the polar deflection h, for different values of the ellipticity ratio. As one may 

expect, the closer to one is the ellipticity ratio a / b, the more stable is β. Figure 3 shows a slight 

decrease of the curvature parameter β only in the case of the strongest ellipticity (a / b = 0.6). For 

larger ratios a / b, the variation of the curvature parameter β  is insignificant. 
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Fig. 2. Curvature radius vs. polar height 
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Fig. 3. Curvature ratio vs. polar height 

 

 

Equivalent stress – equivalent strain curves. Figure 4 shows the curves equivalent stress – 

equivalent strain obtained using the methodology proposed by the authors. Some discrete points 

resulted from measurements performed with the ARAMIS system have been also plotted on the 

diagram. These points have been determined by coupling different values of the circumferential 

strain 2ε  (ARAMIS measurement) with the equivalent stress σ  resulted from Eq. (21) after 

replacing the curvature radius 2ρ  also provided by the ARAMIS system. Figure 4 reveals a good 

agreement between the curves drawn using the new methodology and the experimental points. 

Conclusion 

This paper describes a new procedure for the experimental determination of the curves relating the 

equivalent stress and the equivalent strain by means of hydraulic bulge tests with elliptical dies. The 

main advantage of the methodology proposed by the authors consists in the fact that only two 
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process parameters should be recorded during the experiment (pressure acting on the bottom surface 

of the specimen and polar deflection). The results obtained using the new procedure for ellipticity 

ratios of 0.8 and 0.6 are in good agreement with experimental data measured with an ARAMIS 

system. 
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Fig. 4. Equivalent stress - equivalent strain curves 
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