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A constitutive model is proposed for simulations of hot metal forming processes. This model is
constructed based on dominant mechanisms that take part in hot forming and includes inter-
granular deformation, grain boundary sliding, and grain boundary diffusion. A Taylor type
polycrystalline model is used to predict intergranular deformation. Previous works on grain
boundary sliding and grain boundary diffusion are extended to drive three-dimensional macro
stress–strain rate relationships for each mechanism. In these relationships, the effect of grain size
is also taken into account. The proposed model is first used to simulate step strain-rate tests and
the results are compared with experimental data. It is shown that the model can be used to
predict flow stresses for various grain sizes and strain rates. The yield locus is then predicted for
multiaxial stress states, and it is observed that it is very close to the von Mises yield criterion. It
is also shown that the proposed model can be directly used to simulate hot forming processes.
Bulge forming process and gas pressure tray forming are simulated, and the results are com-
pared with experimental data.
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I. INTRODUCTION

HOT forming processes, including superplastic form-
ing (SPF) and quick-plastic forming (QPF), are used to
manufacture components with complex shapes that
usually cannot be produced by cold forming. Especially
superplastically formed parts find many applications,
particularly in aerospace and transportation industries,
where weight reduction is critical to meet product
performance requirements.[1,2] Finite-element simula-
tions of hot forming are of great interest as a tool for
process design. In hot forming, many parameters affect
the flow stress such as strain rate, temperature, and
microstructure. Therefore, the accuracy of constitutive
models is currently the most significant issue in forming
simulations. There is also great interest in developing a
better understanding of the dominant mechanisms
responsible for hot forming to extend desirable forming
conditions.

Constitutive models of hot forming have been histor-
ically constructed from uniaxial tension tests.[1–5] In
these works, several tests are performed on materials
with various microstructures, temperatures, and strain
rates. Then, a function is fitted to the resulting data.
This function in conjunction with a potential surface

that relates different stress states to an equivalent
stress is used to predict material behavior in various
situations.[6–13]

Researchers have tried to improve their understand-
ing about dominant mechanisms responsible for hot
forming by developing microstructural constitutive
models. In practice, it has been noticed that microstruc-
tural forming mechanisms affect the stress–strain rate
relation. Chandra[14] proposed a constitutive model that
considered microstructural forming mechanisms and
compared it with other available constitutive models.
Some researchers developed a microstructural-based
model and investigated superplastic forming mecha-
nisms.[15–19] More investigations showed that mecha-
nisms of deformation in hot forming and especially
superplastic forming differ substantially from cold
forming.[14] Besides deformation within the grains,
which is the dominant mechanism in cold forming,
other mechanisms may play a role in hot forming,
including grain boundary sliding, grain boundary diffu-
sion, and grain boundary migration.
Many researchers considered the contribution of

intergranular deformation as well as grain boundary
sliding in total deformation and obtained a better fit to
tensile test data.[20–23] Some others also considered
contribution of grain boundary diffusion.[14,16]

The aim of the current work is to propose a
constitutive model based on microstructural mecha-
nisms that can predict material behavior for various
grain sizes and strain rates. Although this model
considers micromechanisms, it can be directly used in
hot forming simulations and does not need multiscale
modeling as discussed in Reference 19. In the current
work, experimental data on an aluminum–magnesium
alloy, i.e., AA5083 at 723 K (450 �C) are used to
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calibrate and validate the model. Strain hardening,
which is typically associated with grain growth during
hot forming, was observed to be small over the
temperature, strains, and strain rates under consider-
ation for this material.[24] Therefore, it can be concluded
that the effect of boundary migration is small in this
case. This material has also proved to be free of any
dynamic recrystallization effects for the conditions
considered in the current investigation.[24–26] Therefore,
to prepare the constitutive model in this article, from the
previously mentioned mechanisms, the following three
are considered to be more important: intergranular
deformation, grain boundary sliding (GBS), and grain
boundary diffusion (GBD).

In the current work, intergranular deformation is
predicted by the Taylor type polycrystalline approach.
This approach is widely used to predict polycrystalline
material behavior in cold-forming processes without
considering the effect of grain boundaries.[27–32]

For the GBS mechanism, a new approach is proposed
to correlate macro strain rates to macro stresses. In this
approach, boundaries are considered as parallel planes,
and it is assumed that slide occurs on these planes. A
grain size effect on stress–strain rate relationship is also
considered.

For the GBD mechanism also, a new three-
dimensional (3-D) relationship between macro strain
rate and macro stress is derived by extending works
by Cocks,[33] Pan and Cocks,[34] and Bower and
Wininger.[16] A grain size effect has also been taken
into account in this relationship. It is shown that for this
mechanism, the proposed stress–strain rate relationship
obeys the Prandtl-Reuss flow rule.

The available constitutive models that include mate-
rial dependency of strain rate and grain size are
applicable for limited conditions of forming. For exam-
ple, some of these relations can explain material
constitutive behavior when the logarithmic scale of
stress and strain rate diagram is a straight line. Some
other relations can only be used for certain grain
sizes.[35] In contrast, there are also some microstruc-
ture-based models that cannot be used in the simulation
of real 3-D processes. The proposed strain rate and
grain size dependant constitutive model can be used for
a vast range of forming conditions. The model is
calibrated with a few experiments for the whole range
of its application. It has been used to simulate real
processes. Another advantage of the proposed model is
that it does not presume any yield locus and automat-
ically predicts the yield locus.

The remainder of this article is organized as follows:
First, assumptions and the governing equations are
listed for the three previously mentioned mechanisms
separately. Then, step strain-rate tests are simulated to
show the capability of the model in various strain rates
and grain sizes. The yield locus is then predicted for
multiaxial stress states, and it is shown that it is very
close to the von Mises yield criterion. Also, to validate
the model in multiaxial stress state conditions, a bulge
test and gas pressure tray forming are simulated. The
results of the previously mentioned simulations are
compared with experimental observations.

II. MODEL DESCRIPTION

In the proposed model, a material point is visualized
as a representative of grains and their boundaries. So the
macroscopic deformation is a result of intergranular
deformation caused by dislocations creep, GBS, and
GBD, at that point. In the current work it is assumed
that the three mentioned mechanisms operate sepa-
rately; therefore, the resulted velocity field of each
mechanism can be calculated separately. Furthermore,
the total velocity field is sum of the entire mentioned
velocity fields. Therefore, the velocity gradient is also the
sum of the velocity gradients of each mechanism.

Lij ¼ LCR
ij þ LGBS

ij þ LGBD
ij ½1�

where Lij denotes the total velocity gradient tensor, LCR
ij

is the velocity gradient due to intergranular deforma-
tion, LGBS

ij is the velocity gradient caused by GBS, and
LGBD
ij is the GBD velocity gradient.

A. Intergranular Deformation

The Taylor type polycrystalline approach with a
standard crystal plasticity model is used to approximate
the response of material within the grains.

1. Single-crystal constitutive model
The crystal plasticity model used in this work employs

the framework of classical crystal plasticity by Peirce
et al.,[36,37] Asaro,[38] and Asaro et al.[39] Implementa-
tion of this model is based on the user-material routine
(UMAT) of Huang[40] in the environment of finite-
element code ABAQUS. In this article, the grains are all
face-centered cubic (fcc) crystals, with 12 (1 1 1) [1 1 0]
slip systems.
The total deformation of a crystallite is a result of two

distinct physical mechanisms: crystallographic plastic
slips caused by dislocation motions on the active slip
systems and elastic lattice distortion. Each grain
deforms plastically by shearing on a set of N slip
systems, which are characterized by unit vectors normal
to the slip plane ma

i and unit vectors parallel to the slip
direction sai , in the initial configuration. The superscript
a indicates a slip system and ranges from 1 to N. In the
plastic deformation, it is assumed that slips system’s
vectors ma

i and sai remain not only undistorted but also
unrotated. Next, the material and lattice are considered
to deform elastically and rotate rigidly from the plas-
tically deformed state to the current configuration.
Hence, the deformation gradient Fij is written as follows:

Fij ¼ Fe
ikF

p
kj ½2�

where Fe
ik and Fp

kj represent elastic and plastic defor-
mation, respectively. The velocity gradient, therefore,
decomposes into elastic and plastic parts as

LCR
ij
¼ _FikF

�1
kj ¼ _Fe

ikF
e�1
kj þ Fe

ik
_Fp
kl

_Fp�1
lm Fe�1

mj ¼ Le
ij þ Lp

ij

½3�

Le
ij ¼ _Fe

ikF
e�1
kj ½4�
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Lp
ij ¼ Fe

ik
_Fp
kl

_Fp�1
lm Fe�1

mj ½5�

The symmetric and antisymmetric parts of velocity
gradient tensor can also be decomposed into elastic and
plastic parts.

DCR
ij ¼ De

ij þDp
ij ½6a�

WCR
ij ¼We

ij þWp
ij ½6b�

It is convenient to define the vectors s�ai ;m
�a
i

� �
;

denoting the slip system a in the deformed configuration.

s�ai ¼ Fe
ijs

a
j ½7a�

m�aj ¼ ma
i F

e�1
ij ½7b�

By introducing the following symmetric and antisym-
metric tensors for each slip system a.

Pa
ij ¼

1

2
s�ai m�aj þ s�aj m�ai

� �
½8a�

wa
ij ¼

1

2
s�ai m�aj � s�aj m�ai

� �
½8b�

The plastic deformation rate and spin for the crystal
can be written, respectively, as

DP
ij ¼

XN

a¼1
_caPa

ij ½9a�

WP
ij ¼

XN

a¼1
_cawa

ij ½9b�

where _ca is the slip rate of a generic system and is
computed from the following:

_ca ¼ _ca
0

sa

s0

� �k1

½10�

where _ca
0 is a characteristic slip rate, k1 is the stress

exponent of the slip system and s0 is a characteristic
flow strength. Hardening is neglected in the current
computations and s0 is assumed to be constant. sa is
resolved shear stress on the slip system a and is com-
puted from the following:

sa ¼ Pa
ijrij ½11�

where rij is the Cauchy stress. The elastic constitutive
equation for a crystal is specified by

T̂ij ¼ _Tij �We
imTmj þ TimW

e
mj ¼ CijklD

e
kl ½12�

where T̂ij is the Jaumann rate of the Kirchhoff stress
tensor considering the lattice rotations and Cijkl is the
tensor of the elastic moduli. For the case of fcc grains,

the elastic properties are specified by values of Young’s
modulus E, Poisson’s ratio m, and shear modulus l with
respect to a coordinate system aligned with the [1 0 0]
directions.

2. Polycrystalline model
For polycrystalline materials, a material point can be

visualized as a multitude of single crystals, and the
constitutive response at this material point is taken as a
suitable average of the constitutive response of the
individual crystals comprising this representative point.
Various averaging procedures have been proposed in the
literature to make this transition from the microre-
sponse of the individual grains to the macroresponse of
the polycrystalline aggregate.[41–44] In the current work,
among these models, the Taylor type model[44] is used to
calculate the crystal or intergranular deformation. In
this model, the deformation in each grain is taken to be
identical to the macroscopic granular contribution of
deformation.

DCR
ij ¼ Dma

ij �DGBS
ij �DGBD

ij ½13a�

WCR
ij ¼Wma

ij �WGBS
ij �WGBD

ij ½13b�

In other words, according to Eqs. [13a] and [13b],
DCR

ij is calculated using the macroscopic deformation
rate Dma

ij and after subtracting the deformation rates
resulting from boundary mechanisms,. A spin tensor in
each grain is also calculated in a similar way.
Furthermore, the macroscopic values of all quantities,

such as stresses, stress rates, and elastic modules, are
obtained by averaging their respective values over grains
with random orientations at that particular material
point.

rma
ij ¼

PNg

1 rCR
ij

Ng
½14�

where Ng is the total number of random directions
considered at that material point. In the current work,
Ng = 70; in other words, 70 random directions were
considered at a given material point.

B. Grain Boundary Sliding

Grain boundary sliding occurs because the shear
tractions act tangent to the grain boundary. For
calculating GBS deformation in a material point, the
following is assumed:

(a) The boundaries are composed of parallel planes in
several presumed directions at a material point.
So, a set of normal vectors indicates the bound-
aries. Figure 1 illustrates this simplification in two
dimensions. In the current work, it is assumed that
in each of xy, zy, and xz planes the grain is an
eight-sided polygon that consequently has four
parallel boundaries. Figure 2 shows these bound-
aries in the xy plane and Table I shows all bound-
ary normal vectors.
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(b) Stress tensor is identical for all boundaries and is
equal to the macro stress in the material point.

(c) Relative sliding velocity between two grains has
the same direction with shear traction acting on
the boundary.

Shear traction acting on all parallel boundaries with a
normal vector nb

i can be calculated as follows:

sb
i ¼ rijn

b
j � rmjn

b
mn

b
j

� �
nb
i ¼ rb

t t
b
i ½15�

The superscript b indicates the number of assumed
boundary planes which ranges from one to 12 in this
case. Here, rb

t is the resolved shear stress and tbi is
direction of this shear traction.
If the resolved shear stress in these boundaries is

greater than a threshold stress rth, then the following
viscous constitutive equation is assumed to characterize
sliding. This equation relates the relative sliding velocity
of two adjacent grains to the resolved shear stress by

mb
t ¼ Xg expð�QGBS=kTÞ

kT ðr
b
t � rth

rth
Þn1 if rb

t >rth

mb
t ¼ 0 if rb

t <rth

(

½16�

where g is a characteristic sliding velocity, k is the
Boltzmann constant, T is the absolute temperature, n1
is the stress exponent of the slid, X is the atomic vol-
ume, and QGBS is the activation energy for GBS. The
shear strain rate from GBS in all parallel boundary
planes with a normal vector nb

i can be written as
follows:

_cb ¼ mb
t

d
½17�

where d is the average grain size. The macro deforma-
tion rate from GBS in these parallel boundaries can be
written as follows:

Db
ij ¼

1

2
_cb nb

i t
b
j þ tbi n

b
j

� �
½18a�

Wb
ij ¼

1

2
_cb nb

i t
b
j � tbi n

b
j

� �
½18b�

Considering all boundaries:

DGBS
ij ¼ 1

2

XNb

b¼1
_cb nb

i
tbj þ tb

i
nb
j

� �
½19a�

WGBS
ij ¼ 1

2

XNb

b¼1
_cb nb

i
tbj � tb

i
nb
j

� �
½19b�

Table I. Assumed Boundary Normal Vectors

Boundary Number b nb
1 nb

2 nb
3

1 a* b� 0
2 b a 0
3 –a b 0
4 –b a 0
5 0 a b
6 0 b a
7 0 –a b
8 0 –b a
9 a 0 b
10 b 0 a
11 a 0 –b
12 b 0 –a

*a = cos(22.5).
�b = sin(22.5).

Fig. 1—Visualizing grain boundaries as parallel planes, illustrated in two dimensions.

Fig. 2—Assumed grain boundaries in xy plane as an example.
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where Nb is 12 in this case. It should be emphasized that
GBS deformation is entirely plastic, and there is no
elastic deformation caused by GBS. It is also worth
mentioning that assuming a higher number of slide
directions than 12 had no significant change in the
results. Therefore, only 12 slide directions were enough
in the current modeling.

C. Grain Boundary Diffusion

Figure 3 shows a grain boundary between two adja-
cent grains. The atoms (or equivalently, vacancies)
adjacent to the grain boundary are assumed to be
mobile. Atoms may detach from each grain, diffuse
along the boundary, and then reattach to one of the two
adjacent grains.[16] In this process, the atoms detach
from regions of the grain boundary that are subjected to
compressive stress and migrate to regions that are under
tensile stress.[18,33,34] Hence, grain boundary diffusion is
assumed to be a function of variation of the normal
stress acting on the boundary.

Therefore, it is assumed that the flux of atoms tangent
to each interface is related to the normal stress[16,18]

through

j ¼ �XDGBtdGB expð�QGBt=kTÞ
2kT

@rn

@s
½20�

where T is absolute temperature, k is Boltzmann con-
stant, DGBt expð�QGBt=kTÞ is the tangential grain
boundary diffusivity, QGBt is the corresponding activa-
tion energy, and dGB/2 is the thickness of the diffusion
layer in one grain. When the temperature is constant,
Eq. [20] can be simplified

j ¼ �q @rn

@s
½21�

where q is a constant. Considering mass conservation,
the velocity discontinuity in the direction of the nor-
mal to the grain boundary is

½mn� ¼ �
@j

@s
¼ q

@2rn

@s2
½22�

Remembering that a material point was visualized as
an aggregate of grains with their boundaries for calcu-
lating GBD deformation, the following is assumed:

(a) Deformation caused by GBD in a material point
can be replaced by deformation that occurs in one
grain by GBD. With this assumption, the atoms
only move around one grain and cannot move
from one grain to another one; in addition, grain
boundary migration is not modeled. With this
assumption, grain boundaries cannot exchange
atoms at triple junctions and satisfaction of mass
conservation at triple junctions does not need to
be considered.

(b) The grain has a spherical shape.
(c) Stress is constant around the grain boundary and

equals the macro stress at that material point.

With these assumptions, a grain boundary is a two-
dimensional space (spherical surface), and Eqs. [21] and
[22] are extended for a two-dimensional space.

~j ¼ �q ~rrn ¼ �q
@rn

@s1
e1 þ

@rn

@s2
e2

� �
½23�

½mn� ¼ �q
@2rn

@s21
þ @

2rn

@s22

� �
½24�

where e1 and e2 are unit base vectors on the boundary
that is a two-dimensional space, and s1 and s2 are
lengths along e1 and e2. Normal stress is

rn ¼ rijninj ½25�

where n is normal vector of the sphere surface. Consid-
ering that stress is constant around the boundary,
from Eq. [24], the velocity discontinuity can be written
as follows:

½vn� ¼ �2qrij
@ni
@s1
� @nj
@s1
þ ni �

@2nj

@s21
þ @ni
@s2
� @nj
@s2
þ ni �

@2nj

@s22

� �

¼ �2qrijaij ½26�

aij ¼
@ni
@s1
� @nj
@s1
þ ni �

@2nj

@s21
þ @ni
@s2
� @nj
@s2
þ ni �

@2nj

@s22
½27�

where rij is a symmetric tensor; therefore

½mn� ¼ �2qrijkij ½28�

kij ¼
1

2
aij þ aji
� �

½29�

To calculate deformation from GBD at a material
point, consider a surface element da with a normal
vector n. In this work, it is assumed that velocity
discontinuity causes elongation (or compression) of an
element of sphere with a surface da and length d as
shown in Figure 4. The deformation rate tensor of this
element in local Cartesian coordinate constructed in the
direction of n can be written as follows:

D0da11 ¼
½mn�
d

D0daij ¼ 0 i 6¼ 1; j 6¼ 1 ½30�Fig. 3—A two-dimensional grain boundary and flux of atom along
the boundary.
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Evidently, the spin tensor is zero and also the
diffusion process is entirely plastic. Considering
Eq. [30], the deformation rate tensor can be transformed
to a global coordinate as follows:

Dda
ij ¼ aimajnD

0da
mn ¼ ai1aj1D

0da
11 ¼ D0da11 ninj ½31�

aim ¼ ei � e0m ½32�

where e0m are base vectors in local coordinate and ei
are base vectors in global coordinates. The total GBD
deformation rate in a spherical grain is, therefore

DGBD
ij ¼ 1

As

ZZ

As

Dda
ij da ¼

1

As

ZZ

As

½vn�
d

ninjda

¼ �2qrmn

Asd

ZZ

As

kmnninjda ¼ Rijmnrmn ½33�

where As is the sphere surface. The fourth order tensor
Rijmn can be calculated by integrating over the grain surface

Rijmn ¼
�2q
Asd

ZZ

As

kmnninjda

ZZ
¼ K

d3

ZZ

As

kmnninjda ½34�

In Voigt notation:

where Sij is the deviatory stress tensor. This relation is
exactly similar to the Prandtl-Reuss flow rule and
satisfies incompressibility and isotropy conditions.
Equation [1] can be rewritten as follows:

Dij ¼ DCR
ij þDGBS

ij þDGBD
ij ½36a�

Wij ¼WCR
ij þWGBS

ij ½36b�

Equations [36a] and [36b] show the effect of strain rate
on the flow stress considering three dominant deforma-
tion mechanisms independently. They also predict effect
of grain size on the flow stress for GBD and GBS
mechanisms. Equations [17] and [35] show the effect of
grain size on the flow stress for GBS and GBD
mechanisms, respectively. According to these equations,
the effect of grain size for GBD mechanism is much
stronger than GBS, which is in agreement with the
experimental results as will be discussed subsequently.

III. NUMERICAL IMPLEMENTATION

To add the proposed constitutive equations to the
Abaqus finite element method (FEM) code, a user
subroutine UMAT is used. For intergranular deforma-
tion, Huang UMAT[40] is used. To include GBD and
GBS, the following algorithm shown in Figure 5 is used.
In this algorithm detij is total strain increment, deGBD

ij is
strain increment from GBD, deGBS

ij is the GBS strain
increment, and deCrij is the strain increment caused by
intergranular deformation. @Dr

@DeCr ; is the Jacobean and is
calculated from the Taylor model. It can be easily shown
that is equal to which is the total Jacobean. h is a
character that shows GBS and GBD are calculated from
the stress at the beginning or the end of the increment.
For example, if h= 0, GBS and GBD are calculated
from the stress value at the beginning of the increment
and if h = 1, the stress value at the end of the increment
will be used. In this work, h =0.5 has been used.

IV. APPLICATIONS AND RESULTS

In this section, the proposed model is used in various
stress states, and the capability and/or limitations of the

model are investigated. Step strain-rate tensile tests are
simulated first for calibration and subsequent validation
of the model and then the hydrostatic bulge test is
simulated as a multiaxial stress state test.

Fig. 4—Deformation caused by GBD on a surface element on the
spherical grain.
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A. Simulation of Step Strain-Rate Tensile Tests

In step strain-rate tensile tests, a series of strain rates
is imposed on a single specimen to obtain flow stress as a
function of the temperature, strain, and strain rate. In
the step strain-rate tests used in current work, after
changing the strain rate, the strain rate remains constant
until the material pass its transition zone and stress
become stable. Additional details of the step strain-rate
testing procedure are described in References 15 and 19.
The flow stress vs strain rate data of AA5083 derived
from the step strain-rate testing procedure by Krajewski
et al.[19] are shown in Figure 6. These experimental data
will be used for comparison with the predicted results in
this article. Considering Figure 6, the data at constant
temperature can fit approximately a creep law of the
form

_e ¼ Arn ½37�

where A is a material constant and n is the stress
exponent. The material constants A and n are functions
of strain rate, grain size, and temperature. The data in
Figure 6 suggest that material behavior can be classified
into two distinct zones:

(a) For grain sizes greater than 22.3 lm and also at
fast strain rates, data can be fitted with a stress
exponent n = 4. For these conditions, material
behavior is less sensitive to grain size, as is shown
by zone A in Figure 6.

(b) At slow strain rates and grain sizes finer than
22.3 lm, material behavior is more sensitive to
grain size and has a lower stress exponent. In the
current work, this zone is called zone B.

The change in stress exponent in these two zones
suggests a transition in the deformation mechanism.
More evidence has been obtained for such a mechanism
transition from the deformation and failure character-
istics of the specimens.[15,26]

The step strain-rate tensile test is simulated by
ABAQUS FEM code with a cubic specimen of length
a. The material behavior is implemented in this code
through a UMAT. The material is subjected to bound-
ary loading, which approximates uniaxial tension. As
can be observed in Figure 7, symmetry conditions are
applied on planes x = 0, y = 0, and z = 0. There is no
traction on planes y = a and z = a, and the cube is
subjected to a constant strain rate by displacing the
plane at x = a. The following velocity is applied to the
plane at x = a to obtain a constant strain rate _e

m ¼ a_e expð_etÞ ½38�

where t is time. The velocity in Eq. [38] is implemented
in the ABAQUS FEM code through a UAMP.

Fig. 5—Numerical algorithm used to implement constitutive equa-
tions in Abaqus software.

Fig. 6—Step strain-rate tests results for AA5083, from Krajewski
et al.[19]
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The constitutive parameters used in these simulations
were calibrated with the following data:

� Data of grain size 81.7 lm for various strain rates
(6 points)

� Data of grain size 7 lm with strain rates of 0.0001
and 0.03 1/s (2 points)

It has been shown experimentally by Agarwal et al.[15]

that for high strain rates and larger grain sizes, grain
boundary mechanisms have no significant effects. There-
fore, to guess parameter values initially, the points with
grain size of 81.7 lm and strain rates more than 0.001 1/s
are used to find intergranular parameters including: _c0,
s0, and k1. Then, using the obtained parameters, several
trials were performed to find grain boundary parameters
including n1, g, K, and to obtain the best fit to the rest of
the selected data.

After the steps mentioned, the final parameter values
are estimated through several trials by using the
previously guessed parameters. For this purpose, a
script was written in Python. In this script for each set of
parameters, stress is calculated for each selected point.
Then, the best set of parameters is selected by the least-
square method and comparing the stress values with the

experimental stresses. Table II shows the final parame-
ters obtained by this method.
The same material properties were then used to

predict the behavior of specimens with other grain sizes.
The predictions of current simulations are compared
with Krajewski et al.’s[19] results as shown in Figure 8.
They are in close agreement for both two distinct zones,
A and B.
To investigate the effect of GBD, simulations are

performed with and without this mechanism. Simulation
results without GBD are compared with Krajewski
et al.’s data in Figure 9. In these simulations, the
parameters in Table II are also used. Simulations
without GBD predict flow stresses near the experimental
results for grain sizes greater than 22.3 lm. Therefore,
the effect of GBD can be ignored for these grain sizes.
The simulation results without GBD also match the
experiments for grain sizes smaller than 22.3 lm but
with strain rates of more than 0.001 1/s. However, for
lower strain rates, simulations predict a higher flow
stress than experiments.
Therefore, GBD is effective only for materials with

grain sizes of 11.2 lm or finer grains and also strain
rates less than 0.001 1/s. These circumstances are exactly
the limits that characterize zone B, observed in exper-
iments. In zone A, GBD mechanism approximately has
no effect, and intergranular deformation and GBS are
dominant mechanisms of deformation.

Fig. 7—Boundary conditions, used in FE simulation (a) in xy plane
(b) in xz plane.

Table II. Calibrated Parameters Used in the Current
Simulations

Parameter Value

Temperature T 723 K (450 �C)
Young’s modulus E 70000 Mpa
Poisson’s ratio m 0.3
Characteristic strain rate _c0 6s�1

Slip system strength s0 65 Mpa
Stress exponent of slip k1 4.35
Stress exponent of boundary slide n1 3.6
Grain boundary sliding
pre-exponential g

1.8683 Jsm�2

Grain boundary sliding activation
energy QGBS

1.34 e-19 J

Atomic volume X 1.66 e-29 m3

Grain boundary diffusion coefficient K 1.34 e-2 Nm�3 s�1

Threshold stress of boundary slide rth 0.2 MPa
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Fig. 8—Comparison of current simulations results with Krajewski
et al.’s data.[19]
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To investigate effect of each mechanism, the contri-
bution of each deformation on total strain rate is defined
as follows:

fCR ¼

R t
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DCR

ij DCR
ij

q
dt

R t
0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
DT

ijD
T
ij

q
dt

; fGBS ¼

R t
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DGBS

ij DGBS
ij

q
dt

R t
0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
DT

ijD
T
ij

q
dt

;

fGBD ¼

R t
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DGBD

ij DGBD
ij

q
dt

R t
0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
DT

ijD
T
ij

q
dt

½39�

whereDij
T is the total deformation rate, fCR is the fraction

of crystal or intergranular deformation, fGBS is the
fraction from GBS, and fGBD is the fraction from GBD.

Figures 10 through 12 show contributions of each
mechanism for various grain sizes and strain rates.

In all Figures 10 through 12, a pronounced difference
is observed between two distinct zones that were
previously defined. Figure 10 shows that GBD is nearly
zero for zone A, but it has a significant contribution in
zone B. Therefore, it can be concluded that the
difference between these two zones is basically from
GBD. Knowing that material shows superplastic behav-
ior in zone B, it is realized that GBD has significant role
in superplastic forming. Hence, superplastic limits can
be extended by promoting this mechanism.

Figure 12 shows the contribution of GBS. In this
figure, a remarkable difference is observed between
zones A and B. In zone A, the contribution of GBS
decreases when the strain rate increases, but in zone B
the behavior is the opposite. This remarkable change in
these behaviors is because GBD is more pronounced in
zone B but is less effective in zone A.

In zone A where the dominant mechanisms are GBS
and intergranular, flow stress changes slightly with grain
size but in zone B where GBD is also effective, grain size
has more effect on the flow stress. These results validate
Eqs. [17] and [35], which express the effect of grain size
on flow stress for GBS and GBD mechanisms.

B. Simulation of Multiaxial Stress States

After showing the validity of the model in uniaxial
stress state, the model is examined for multidirectional
stress states.

1. Yield loci from the model
Comparing the yield locus from the model with a well-

known yield locus such as von Mises criterion can verify
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Fig. 9—Comparison of current simulation predictions without GBD
with Krajewski et al.’s[19] data.
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the model in multidirectional stress states. To obtain the
yield locus from the presented model, the material is
subjected to two directional tension and compression
tests with different ratios. As shown in Figure 13,
symmetric conditions are applied on planes x = 0,
y = 0, and z = 0; there is no traction on plane z = a;
and the solid is subjected to a constant strain rate by
displacing the plane x = a and y = a. Also, the ratio of
velocities in plane x = a and y = a differs from one
simulation to another, but in all ratios, the velocities are
chosen such that the effective strain rate remains constant

ffiffiffiffiffiffiffiffi
_eij _eij

p
¼ cte ½40�

In Equation [40], the incompressibility rule is used to
calculate strain rate in the z direction.

_e1 þ _e2 þ _e3 ¼ 0 ½41�

The simulations are performed for grain size = 7 lm
and strain rate = 0.00011/s. where intergranular defor-
mation, GBD, and GBS mechanisms are effective.

Figure 14 compares von Mises yield surface with yield
loci obtained from the model assuming Taylor type
polycrystalline, Taylor type polycrystalline with GBS,
and Taylor type polycrystalline with both GBS and
GBD mechanisms, respectively. These yield loci are
obtained by using the material parameters reported in
Table II. To compare the shape of the yield loci
obtained from the model with the Mises yield locus,
the same yield stress in pure tension for both models are
assumed. As it can be shown from Figure 14, the yield
loci shapes are very similar to von Mises criterion
especially when GBD mechanism is taken into account.
Considering Eq. [35] and its similarity to von Mises

criterion, this similarity in yield loci was expected. Yield
loci show that boundary mechanisms are isotropic.
Researchers who experimentally studied yield locus

for superplastic forming of Sn-38Pb at room tempera-
ture and Zn-22Al alloy at high temperature[2,45] also
concluded that these materials are isotropic and their
yield loci obey the von Mises yield criterion. Therefore,
it can be concluded that the model can be used to predict
material behavior in multidirectional stress states.

2. Gas Pressure Forming Simulation
The material model was implemented in FEM simu-

lations of gas-pressure bulge-forming to show the ability
of the model in situations where both multidirectional
stress states and various strain rates exist. Five various
grain sizes are modeled to show the ability of the model
to predict material behavior considering all effective
parameters. These cases were experimentally studied by
Krajewski et al.[19] Table III shows initial sheet thick-
ness of each case and its corresponding experimental gas
pressure.
The experiments were performed at 723 K (450 �C).

The formation was terminated prior to failure after
1800 seconds in each test. The dome height was mea-
sured after forming, and the relationship between the
dome height and grain size was obtained. According to
these experiments, increasing the grain size significantly
decreases the dome height as is expected. Details of
experimental procedure are reported in References 19
and 46.
ABAQUS Standard is used to simulate gas-pressure

bulge-forming. The material model is applied through a
user subroutine. The process is considered to be axi-
symmetric. A mesh sensitivity study is conducted to
assure that element size is sufficiently fine to provide
acceptable predictions of bulge displacements. For this
purpose, simulations with one and two elements along
the sheet thickness were carried out, and no significant
change was observed in the dome height and stress field.
Therefore, for all simulations (simulation for various
grain sizes) two elements along the thickness are used.
For this purpose, approximately 200 quadrilateral
CAX4 elements with four integration points for various
sheet thicknesses are used. Figure 15 shows initial mesh
of one of the blanks. Figure 16 shows the deformed
sheet.
The implicit formulation in ABAQUS requires the

calculation of an initial elastic response; hence, a linear
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Fig. 13—Boundary conditions for investigating yield loci (a) in xy
plane (b) in xz plane.
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ramp type pressure is applied within 1 second and is
then kept constant as was used in the experiments
(1800 seconds). Plastic deformation was subsequently
calculated for the duration of the simulation. The
simulation results of dome heights vs grain sizes as well
as experimental data are shown in Figure 17.

The predicted trends in dome height follow the trend
in the experimental curve that shows a rapid decrease in
dome height (for the finer grain sizes) as grain size
increases and a slower decrease to a nearly constant
value (for the coarser grain size materials). The disparity
between theory and experiment for the finest grain size
material is likely from the neglecting effects of hydro-
static pressure as has been mentioned by Eric et al.[46]

They suggested that hydrostatic stress increases bound-
ary deformations but does not affect the intergranular
deformation. It is worth mentioning that the presented

model in this article can capture this effect by incorpo-
rating effect of normal stress on GBS by modifying
Eq. 16. This will be implemented in our future works
since it needs experimental calibrations.

3. Tray forming simulation
In this section, the proposed constitutive model is

examined in a practical example. At first, the model is
calibrated by tensile test values of AA5083 at 748 K
(475 �C) with different strain rates by Luo et al.[47]

Then, it is used to simulate superplastic gas pressure tray
forming at the same temperature. In this process, a sheet
is clamped on a die with a rectangular cavity of 200 mm
width, 200 mm length, and 150 mm depth. Figure 18
shows one quarter of the die surface and the sheet. A die
entrance radius of 20 mm makes the transition from the
flange to the rectangular cavity. More details about
tensile tests results and tray forming process have been
reported by Luo et al.[47] In this process, the pressure is
applied on the sheet for 1248 seconds; after this time,
the sheet forms entirely on the die. After forming, the
thickness of the part was measured along the line (AB)
that connects the center of the part to midpoint of one
edge.
ABAQUS EXPLICIT finite-element code is used to

simulate this process. In the current simulation, the
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Fig. 14—Resulting yield loci from the Taylor type polycrystalline,
the Taylor type polycrystalline with GBS, and the Taylor type poly-
crystalline with both GBS and GBD.

Table III. Initial Sheet Thickness and Pressure Related

to Each Grain Size

Grain size (lm) 7.0 11.2 22.3 37.2 81.7
Gas pressure (MPa) 0.39 0.25 0.31 0.33 0.35
Sheet thickness (mm) 1.60 1.04 1.27 1.38 1.44

Fig. 15—Initial mesh of a blank used in gas-pressure bulge-forming
simulation.

Fig. 16—Final deformed sheet after 1800 s and applying a constant
pressure.
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Fig. 17—Simulation results for dome heights vs grain sizes compared
with Krajewski et al.’s experimental data.[19]
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pressure history that is used in the real process[47] is
applied on the sheet by a user amplitude routine
(VUAMP). The sheet is meshed with 529 quadrilateral
M3D4 elements and the die has 668 R3D4 elements.
Figure 19 shows the final shape that is predicted by the
current simulation. Figure 20 shows the predicted sheet
thicknesses after 1248 seconds, i.e., the same time that
the measurements were performed. In this figure, the
measured thicknesses are also added for comparison. It
can be observed from this figure that the predicted
thicknesses are in good agreement with measured values.
The results obtained in this section prove that the model
can be used for the simulation of industrial parts.

C. Investigation of Model Sensitivity

In this section, the effects of various constitutive
parameters of the presented model in the results are
investigated. This investigation will reveal the impor-
tance of each parameter in various circumstances. It is
also helpful to investigate more about the effect of each
mechanism in various circumstances. In this section, all
parameters values are the same as those in Table II
unless specified otherwise in the figure. In all figures, the
effect of parameters are plotted for two small and large
grain sizes to show their effects in the whole region that
is considered in this article.

The effect of characteristic strain rate _c0 is shown in
Figure 21. As it is observed from this figure, this
parameter has a significant effect on the predicted stress
for almost the entire region. This is in general agreement
with experimental observation reported in Reference 15.
Only for a grain size of 11.2 lm and strain rate less than

0.0011/s, this effect decreases. With regard to Figure 6, it
can be concluded that effect of this parameter in region
B is less than region A. Figure 11, which shows
intergranular contribution in total deformation, also
suggests a similar conclusion.
Figures 22 and 23 show the effects of GBS parameters

including GBS preexponential g and threshold stress on
the predicted stress, respectively. GBS parameters have
a significant effect for grain size of 11.2 lm, but this
effect sharply reduce for a grain size of 81.7 lm.
The effect of GBD coefficient K is illustrated in

Figure 24. Comparing this figure with Figure 6 reveals
that this parameter is only effective in zone B. This result
confirms previous claim that GBD can be ignored for
grain sizes more than 22.3 lm.
In general, it can be concluded that all the model

parameters are effective, but some of them have a lesser
effect in a certain zone. This change can also be explained
by the role of each mechanism in various regions.

V. CONCLUSIONS

A new constitutive model for simulations of hot
plastic forming has been proposed. The model considers
grain boundary sliding, diffusion, and deformation
within the grains. The accuracy and capability of the
model were illustrated by comparing the predictions of
the model with experimental data. New stress–strain-
rate relationships were derived and presented for grain
boundary sliding and grain boundary diffusion and the
following results were obtained:

1. In deformations caused by the GBS mechanism, the
strain rate has an inverse relation with the grain
size so by increasing the grain size, the GBS defor-
mation decreases.

2. In deformations caused by the GBD mechanism,
the strain rate has an inverse relation with power
three of grain size, so by increasing the grain size,
the GBD deformation decreases more rapidly com-
pared with GBS.

3. The stress–strain rate for grain boundary diffusion
mechanism behaves similar to the Prandtl-Reuss
flow rule.

The preceding predictions are in good agreement
with the experimental expectations and observations

Fig. 18—One quarter of the die surface and the sheet.

Fig. 19—Final shape of one quarter of the part.
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considered in this article. After using model in various
simulations, the following results were obtained:

1. After calibration with only a few experiments, the
presented model predicts the flow stresses close to
the experimental data. The model can be used to
predict the flow stresses for a vast range of grain
sizes and strain rates.

2. The model can be used for AA5083 at 723 K
(450 �C) with grain sizes more than 22.3 lm with-
out considering the GBD effect.

3. Transition from zone A to B that exists in experimen-
tal observations is caused by GBD deformation.

4. GBD has a significant role in superplastic forming.
5. The resulting yield locus from the model predicted

the von Mises criterion without any preassumptions.

6. The model could predict deformations of bulge
forming tests and tray forming process. It is
expected that it can also predict deformation of
other multiaxial processes.

7. A sensitivity analysis of affecting constitutive
parameters in the model showed the following:

� GBS parameters have a significant effect for small
grain sizes, but this effect drastically reduces for
larger grain sizes.

� GBD coefficient is only effective for small grain
sizes and low strain rates.

� Characteristic strain rate _c0 in each slip system
has a significant effect on predicted stress almost
for the entire region.
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Fig. 21—Effect of characteristic strain rate _c0 on stress for grain sizes of 11.2 lm and 81.7 lm.
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The model requires heavy computations at each
material point. Therefore, its application in finite-
element simulations that have several integration points
is time consuming.

The computations did not consider grain growth and
its consequent hardening effects. Also, the effect of
hydrostatic pressure on the deformation of fine grain
materials can be investigated by considering the effect of
normal stress on GBS. These will be covered in author’s
future work.
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