
Transfer inovácií 22/2012 2012

 155

Vencel Biro

Dorel Banabic
CERTETA-Research Center in Sheet Metal

Forming

Technical University of Cluj-Napoca,

Memorandumului 28, 400114, Cluj-Napoca,

Romania

vencel.biro@tcm.utcluj.ro

tel.: +40740 352 243

Abstract
The equipment in Research Center in Sheet Metal

Forming (CERTETA) laboratoty of Technical

University Cluj-Napoca need a solution to transport

data between them, pieces of equipment that are at
significant distance from each other. After a

measuring system produces its results these results

will have to be copied to a data storage device (CD,

flash drive) and physically transported to the

laboratory where the simulation stations are located.

After the simulators produced their data, the

information needs to be, again physically,

transported to the presses or other manufacturing

equipment. We decided to automatize this process

between the machines and different workstations.

The process of obtaining the first working

prototype is detailed in this paper.

Keywords: prototype, process chain,

communication, internet, web

development

1. Introduction

A standard metal forming research process

includes equipment in different locations. The data

between the testing, simulation and manufacturing

equipment are usually transmitted with different

storage devices. The purpose of the DaCoTraP
project is to eliminate the need of these storage

devices by allowing the different devices to

synchronize between them using the internet. The

solution to the distance problem is a platform

capable of collecting data, processing it and serving

it back upon request. Using this platform, the

machines will be able to communicate with each

other in almost real-time independently from their

location. After studying the existing research in this

field we concluded that there are numerous others

working on machine-to-machine communication

and control through the internet. Using the existing

research we will be able to build a platform of

applications that will be able to collect data from

different devices, process it and redistribute it.

 Plenty of similar research has been done in

the field. Amos H.C. Ng et al. offer good insight

into modeling and simulation [12] together with

Byrne et al. who presents three different approaches

to simulation exploring the advantages and

disadvantages of web-based simulation [16]. Brown

et al. paper implements a web-enabled repository

system that has been designed for supporting

distributed automotive component development

[13]. C.D. Tarantilis et al. focus their efforts on a

system implementation that combines as many

functionalities as possible into a single, integrated
software program that runs on a single database, in

order that the various modules and parts can easily

share information and communicate with each other

[14]. Lan presents a remarkably similar system to

DaCoTraP specialized in rapid prototyping and

manufacturing. A central server application is used

by users and machines to work together on rapid

prototyping tasks [15]. They also chose a similar

architecture for another project of theirs [17].

To prove that there is a possible solution to this

problem and that the solution we came up with can

be implemented there is a need for a proof-of-

concept prototype.

2. The DaCoTraP platform

2.1 Naming of the project

The name chosen for the application

boundle was DaCoTraP, an abbreviation of the

“Data Collect/Transfer Platform” title. A project

codename was urgently needed even at the

beginning of the research and implementation so

the DaCoTraP was invented. This name will most
certainly change during the research period but until

then it denotes the real life application part of the

whole project.

2.2 Requirements

To be able to include machines from
outside of our laboratory complex, maybe from

anywhere around the world we decided to use the

internet to transfer data thus creating the basic but

most important requirement that a piece of

machinery has to have in order to be part of the

system: access to internet. Using the internet the

devices should be transferring the experiment data

between them creating the following path of

information: the information arriving tto the

simulation system should be composed of multiple

experiments.

We could see that we are going to need a server and

separate client applications that will be deployed on

the devices themselves to communicate with the

server. To keep track of the equipment, protect the

data and have some kind of overview of the status

of the projects there is a need of a web application
that allows users to register themselves and the

PROTOTYPING A WEB BASED SYSTEM FOR METAL FORMING PROCESS

CHAIN ASSISTANCE

mailto:vencel.biro@tcm.utcluj.ro

Transfer inovácií 22/2012 2012

 156

devices and issue tasks. There is a need for

a webserver that communicates with the different

clients and of corse we need different clients for

different machines. Different clients are needed

becasue the platforms differ from each other mostly

in operating systems and data structure. The most
important part of the system is the web service

through which the communication flows.

Fig. 1 - The direction of information in the new sytem

All the information has to be stored somewhere and

be accessible by the web application and the web

service so there is a need for a central database . To

maintain this central database there is need for

another application that is responsible for archiving,
email sending, cleanup and monitoring.

2.3 Not Real time (NRT) application

The principal responsibility of a real-time

(RT) system can be summarized as that of

producing correct results while meeting predefined
deadlines in doing so. Therefore, the computational

correctness of the system depends on both the

logical correctness of the results it produces, and

then timing correctness, i.e. the ability to meet

deadlines, of its computation.

A RT application can be modeled as a set of

cooperating tasks. These tasks can be classified

according to their timing requirements, as hard real-

time (HRT), and not real-time (NRT). A HRT task

is a task whose timely (and logically correct)

execution is labeled as critical for the operation of

the whole system. The deadline associated to a

HRT task is pronounced hard deadline.

Consequently it is assumed that the missing of a

hard deadline can result in a tragic system failure.

NRT tasks are those tasks which exhibits no real-

time requirements (e.g. system maintenance tasks
that can run occasionally in the background).

The taxonomy of application tasks can de further

expanded with the terms periodic, aperiodic and

sporadic. Periodic tasks are tasks which enter the

execution state at regular intervals of time, i.e.

every T time units. These tasks are usually

associated with hard deadlines.

Aperiodic tasks are tasks whose execution time

cannot be anticipated, as their execution is

determined by the occurrence of some internal or

external events. These tasks are usually NRT tasks.

Finally, aperiodic tasks bound to hard deadlines are

termed sporadic tasks, e.g. tasks dealing with the

occurrence of system failures (exceptions) or

prioritized responses to some event. With the above

classifications in mind, one can observe that the

principal responsibility of a RT operating system is

to guarantee that each individual execution of each
application task can meet the timing requirements

of that task. However, it is worth noting that, in

order to fulfill that responsibility, the objective of a

RT operating system cannot be stated just as that of

minimizing the average response time of each

application task; rather the fundamental concern of

a RT operating system is that of being predictable

[1].

Being non-real-time is the biggest difference

between the application and other virtual laboratory

implementations. C. C. Ko even uses a Java applet

web page tocontrol the laboratory in real-time [4].

2.4 Time-Triggered

Two general paradigms for the design of

predictable RT system can be found: Event-

Triggered (ET) and Time-Triggered (TT). In ET RT

system any system activity is initiated in response

of the occurrence of a particular event, caused by

the system environment (mainly software or

hardware interrupt vectors). In TT RT system

activities are initiated as predefined instants of the

globally synchronized clock recur (scheduling,
dispatching of events).

In the robotic systems there are all the classes

presented above. Path planning and servo-loops are

periodic (Time-Triggered), the sensor events are

usually aperiodic, emergency signals and some

other sensor events are sporadic (Event-Triggered)

[1].

The system will not communicate in a Real Time

manner because it is not necessary, also not

possible with a large number of connected devices.

This means the system is non-real time (NRT).

Each communication will be initiated by the

devices connected to the system in certain preset

intervals of time thus the system is time triggered

(TT) [2].

2.5 Technologies

The application bundle needs to be

implemented as fast and with as little effort as

possible. It also needs to be highly maintainable.

Microsoft’s .Net technology was chosen as the

basic technology (unlike an enormously high

percentage of researchers who use Java [4] or C++
on Linux [5]). The web application will be an

Asp.Net application, the communication service

(called Data Service) an Asp.Net web service, the

maintaining application (called Maintenance

Service) a Windows service and the database SQL

Server. The clients that run on machines supporting

Windows will also be Windows services.

Transfer inovácií 22/2012 2012

 157

2.6 Trimming features to reduce effort

To put together a platform that includes user

registration, web service communication, database

use, web technologies, multiple experiments to

simulation features and many others is a huge task
and requires a very long implementation time. This

is why the following steps were taken to reduce the

implementation time and have a prototype ready as

soon as possible:

 Eliminate the option to use multiple

experiments with one simulation. The

system will send the experiment results to

the simulators separately. If multiple

packets are needed then the simulator can

wait. This way the complexity is reduced

and human interaction can handle the few

exceptions when the system is used

differently form the simple approach.

 Database approach will be handled with

Linq To SQL object relational mapper.

This replaces the need for a database

access layer with a generated, already
available solution. Using ORMs also

drastically increases the maintainability of

the system because database change errors

will be signaled immediately at compile

time [6].

 Eliminate the manufacturing part from the
equation: the prototype will only handle

the measurement and simulation systems.

 Focus on Windows clients: the only

supported machines by the prototype are

the ones that run on Windows so a single

technology has to be used for the clients.

 Reuse as much as possible from the client

code. In order to avoid the implementation

of one client/manufacturer the basic

application code will be reused by all

clients. The manufacturer-specific features

will be implemented as plugins.

 Existing frameworks and resources will be

used for the prototype; nothing is

implemented new if it is not necessary.
The web application will use a modified

Visual Studio basic webpage template, the

CSS library will be Twitter’s Bootstrap [7]

and the JavaScript library used will be

JQuery. All these libraries are highly

efficient, robust solutions used and

supported by many [8]. For CAPTCHA we

will use Google’s ReCAPTCHA [9], for

login and register functionality we will use

a modified membership provider from the

basic Visual Studio template.

 Manager Service (the service responsible

for the maintenance of the database) will

not be included in the prototype.

3. Implementation and communication

3.1 Basic implementation, feedback

After the requirements and the technology

were defined together with the new restrictions a

basic version was implemented but this alpha

prototype version was not usable without feedback
from the lab workers who will be the majority of

the platform’s user-base.
During discussions we have discovered that the

routine of our colleagues in the laboratory includes

them taking their work (aka the experiment files)

home with them. Because the clients all work

locally on the machines we had to make possible

for the users to manipulate the data a bit more

freely. The prototype needs this feature in order to

be able to prove that it does the job it is supposed to

Fig. 2 - Overall structure of the DaCoTraP platform

Transfer inovácií 22/2012 2012

 158

do: making the users’ life easier so two new

requirements were added: upload/download

experiments/simulations as files to/from the

website.

3.2 Communication, web service

The key component in the communication is a .Net

web service which will be called DataService. The

Data Service is a RESTful web service. The

communication protocol will consist of very basic

HTTP methods: GET, POST, PUT and DELETE.

This DataService exposes two categories of
methods: the first category only contains one

method which is aimed to serve the devices; the

other category will contain API members mostly

targeted to serve data (mostly test results) to third

party clients. The system will only have a single

method responsible for device communication. It

will have a string return type and a most important

string parameter. The service description (WSDL)

will be short; this will shift the implementation

effort from the devices to the DaCoTraP application

because the devices will only have to be able to call

one web method. The communication will be one

sided; always initiated by the devices by calling this

method.

Institutions and companies usually have very strict

firewall rules and forbid communication in through

almost every port. This is why the port 80 will be

used for client-server communication solving the

quite big problem of firewalls; the port 80

communication is allowed by every firewall.

3.3 Web application

The Web interface is an ASP.Net

webpage. After passing the login page the users can

organize the devices, visualize the data sent by

them and issue commands.

The web application will take advantage of Ajax

and the JQuery framework. The design of the

application will strive to be as efficient, clean and

effective as possible from the point of view of the

architecture [10] and used pratices [11].

User will have access to all devices and all

experiments; otherwise the assignment of the

equipment would hinder the users in the use of the
application. This is why the application supports a

single user role which has maximum access to

every zone of the application.

Fig. 3 - Path of communication between the different parts of the project

public string UploadMeasurementFile(string serial,string validationCode, string collectedDate,
string fileName, Stream fileContent)

Transfer inovácií 22/2012 2012

 159

3.4 Agents, clients

All clients are Windows Services that run

different plugins for every job. After startup the

service loads all plugins from a specific plugin

folder. Each plugin gets a separate timer assigned to

them. The plugin provides information about itself:

name and the interval at which it should be

executed. Also each plugin is separately configured

with a configuration file. All the upload clients and

the Manager Service use the Agent-Plugin

architecture.

4. Conclusions

DaCoTraP platform will be more flexible than

the already existing solution by allowing limitless

number of devices to be connected with each other

and making the communication independent from

the content. It eliminates the need for physical data

carriers and the limitation of range; the number of
device types can be easily increased by

implementing the client application for more types

of machines. After completion the solution can be

extended with numerous third party features by

using the API. For example a desktop application

can download data and visualize it on a big screen

placed at the entrance of the facility; ATMs can

display donation requests while offering real

production data. A mobile version could offer users

almost the same functionality as the web

application and mobile apps could use the service

as their service façade.

After having a working prototype the effort can be

directed to implementing new features.

5. Acknowledgements

The paper has been elaborated as part of the

projects: "Studii doctorale în ştiinţe inginereşti în

scopul dezvoltării societăţii bazate pe cunoaştere -

SIDOC", Contract no. POSDRU/88/1.5/S/60078

and PCCE-100/2010.

6. References

[1] [11.05.2012]

http://www.ifr.mavt.ethz.ch/research/xoberon/i

ntroduction.html

[2] J. Heilala, Open Real-time Robotics Control -

PC Hardware, Windows/VxWorks Operating

Systems and Communication, PhD Thesis,
2001.

[3] S. Kumar Parida: Framework and

Implementation of a Vision Based Tele-robotic

Control over Internet for an Industrial Robot,

PhD Thesis, 2009.

[4] C. C. Ko et al.: Creating Web-based

Laboratories, Springer, Heidelberg, 2004.

Fig. 4 - Completed experiment screenshot

http://www.ifr.mavt.ethz.ch/research/xoberon/introduction.html
http://www.ifr.mavt.ethz.ch/research/xoberon/introduction.html

Transfer inovácií 22/2012 2012

 160

[5] F. Davioli et al.: Remote Instrumentation and

Virtual Laboratories, Springer, Heidelberg,

2010.

[6] [11.05.2012]

http://en.wikipedia.org/wiki/Object-

relational_mapping
[7] [11.05.2012]

http://twitter.github.com/bootstrap/

[8] Bear Bibeault, Yehuda Katz: jQuery in Action,

Second edition, Manning, 2010

[9] [11.05.2012] http://www.google.com/recaptcha

[10] Microsoft Patterns & Practices Team:

Microsoft Application Architecture Guide,

Microsoft Press, 2009

[11] Stephen D. Ritchie: Pro .Net Best Practices,

Apress, 2011

[12] Amos H.C. Ng et al.: Virtual manufacturing for

press line monitoring and diagnostics,

International Journal of Machine Tools &

Manufacture, 2008, p. 565–575

[13] D. Brown et al.: A Web-enabled virtual

repository for supporting distributed

automotive component development, Advanced

Engineering Informatics, 2004, p. 173–190

[14] C.D. Tarantilis et al.: A Web-based ERP system

for business services and supply chain

management: Application to real-world

process scheduling, European Journal of

Operational Research, 2008, p. 1310–1326

[15] H. Lan: Web-based rapid prototyping and

manufacturing systems: A review, Computers

in Industry, 2004, p. 51–67

[16] J. Byrne et al.: A review of Web-based

simulation and supporting tools, Simulation

Modeling Practice and Theory, 2010, p. 253–

276

[17] H. Lan et al.: A web-based manufacturing

service system for rapid product development,

Computers in Industry, 2009, p. 643–656

http://en.wikipedia.org/wiki/Object-relational_mapping
http://en.wikipedia.org/wiki/Object-relational_mapping
http://twitter.github.com/bootstrap/
http://www.google.com/recaptcha

