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a b s t r a c t

This paper is devoted to elasto-plastic orthotropic model within the multiplicative elasto-
plasticity, which describes the change of the orthotropic axes, i.e., orientational anisotropy
and the strength-differential effect, when the yield condition is pressure insensitive and
dependent on the third invariant of the stress. The orthotropy directions are characterized
by Euler angles within the constitutive framework with small elastic strains, large elastic
rotations and large plastic distortions. The presence of the plastic spin makes possible
the description of the orientational anisotropy. We make herein an attempt to develop a
hardening model, which includes the kinematic hardening given by Armstrong and Freder-
ick (1966) law adapted to orthotropic material and isotropic hardening, and complies with
the experimentally observed plastic yield and flow behaviour reported by Verma et al.
(2011) in tension–compression–tension and compression–tension–compression. By push-
ing away to the actual configuration the material response, the rate form of the model with
the objective derivatives expressed via the elastic rotations is characterized by a differen-
tial system for the following unknowns: the Cauchy stress, plastic part of deformation, ten-
sorial and scalar hardening variables and Euler angles. We present the rate elasto-plastic
model with a plastic spin in the case of an in-plane rotation of the orthotropy direction,
and a plane stress, respectively. In the plane stress, the equation for the rate of the strain
in the normal direction is first derived and subsequently the modified expression for the
plastic multiplier associated with an in-plane rate of the deformation becomes available.
Numerical simulations for the homogeneous deformation process on the sheets and com-
parisons with experimental data make possible a selection among the plastic spins intro-
duced in this paper, aiming at obtaining a good agreement with the experiments
performed for an in-plane stress state by Kim and Yin (1997). When the shear deformation
of the plate is numerically simulated, the stabilization of the orientational anisotropy
occurs in the presence of the plastic spin, in contrast with the unreasonable behaviour pro-
duced in the absence of the plastic spin.

� 2013 Published by Elsevier Ltd.
1. Introduction

In this paper the plastic spin and non-quadratic orthotropic yield function, insensitive to the pressure and dependent on
the third invariant of the stress, are combined to describe the elasto-plastic hardening material with strength-differential
effect. The effect of the so-called strength differential effect of some metals has been experimentally observed by Hosford
(1993) and Verma et al. (2011) with the compressive strengths lower than the tensile strengths and reported by Kuroda
elasto-

http://dx.doi.org/10.1016/j.ijplas.2013.01.005
mailto:tigoiu@fmi.unibuc.ro
mailto:stigoiu@yahoo.com
mailto:iancu_lidia@yahoo.com
http://dx.doi.org/10.1016/j.ijplas.2013.01.005
http://www.sciencedirect.com/science/journal/07496419
http://www.elsevier.com/locate/ijplas
http://dx.doi.org/10.1016/j.ijplas.2013.01.005


2 S. Cleja-T�igoiu, L. Iancu / International Journal of Plasticity xxx (2013) xxx–xxx
(2003), Nixon et al. (2010), Kuwabara (2007) with the flow stress in uniaxial compression larger than that in uniaxial tension.
This is the rationale that led Cazacu and Barlat (2004) to extend the Drucker isotropic criterion dependent on the third
invariant of the stress to orthotropic materials with strength differential effect, see also Cazacu et al. (2006) and Cazacu
et al. (2010). Kuwabara (2007) considers that the accurate knowledge of the strength differential effect and the Baushinger
effect in sheet metals are the crucial in predictive calculations for metal forming processes. Kuwabara (2007) reviewed
experimental data and techniques for measuring the anisotropic plastic behaviour of metal sheets and tubes under a variety
of loadings. Experimental difficulties in the conventional tension–compression experiments are related with the buckling of
thin sheet metals. To overcome these difficulties, special devices for preventing buckling where attached to the specimens
and the adhesively laminated specimens were prepared with pieces of sheets cut from uniaxially pre-strained sheets, see
Yoshida (2000) and Kuwabara (2007). We mention that papers by Yoshida (2000) and Yoshida et al. (2002) address the con-
stitutive model of cyclic plasticity for materials which exhibit a sharp point and subsequent abrupt yield drop followed by
the yield plateau. When the flow stress in tension is not identical to that in compression, an asymmetric yield surface occurs.
Thus these criteria (Hill, 1948; Barlat et al., 2003) are symmetric, so can not predict the yield stress difference in tension and
compression. However, Hill (1948) yield criterion under plane stress state which involves additional linear terms is used by
Verma et al. (2011) to derive an asymmetric yield function.

The rationale for using non-quadratic yield functions, which are insensitive to the pressure, has been imposed by their flex-
ibility in the fitting of the initial yield shape and experimental data and by the necessity to perform a better description of the
material behaviour taking into account the r-value data, as well as the yield stress data, see Cazacu and Barlat (2004), Barlat
et al. (2005) and Soare et al. (2008), or to capture possible different yield stresses in tensile and compressive tests, see Cazacu
and Barlat (2004) and Verma et al. (2011).

Non-quadratic polynomial yield functions are introduced in conjunction with their convexity by Soare and Barlat (2010)
(generalizing the linear transformation) and Soare et al. (2008) in stress component representations. One method used in the
plasticity of metals to describe the initial yield criterion is based on linear transformations, see for instance (Barlat et al.,
2003, 2005); Kim et al., 2007, and the comments made in Soare and Barlat (2010). One or two linear transformations, say
L0 and L00; are used to capture the material anisotropy, which generally means the presence of eighteen material constants.
We also mention that the yield function has been represented as being dependent on the components of the stress with re-
spect to orthotropic directions, i.e., rolling, transversal and normal directions, which are kept constant during the deforma-
tion process, as for instance in Barlat and Lian (1989) and Banabic et al. (2003, 2005).

The non-quadratic yield function introduced by Barlat et al. (2003) is used in the generalized finite element formulation
for a mixed hardening elasto-plastic material with a non-linear non-associated flow rule performed by Taherizadeh et al.
(2011, 2010) in the small deformation framework. In Korkolis and Kyriakides (2008), the non-quadratic Hosford (1979, ’s)
and Karafillis and Boyce (1993) yield functions are used in order to compare the numerical simulations and hydroforming
experiments on aluminum tubes. The non-quadratic yield criterion based on spectral decomposition of the symmetric fourth
rank elastic tensor (like the elasticity tensor) on the basis of the eigenvectors, represented through second order tensors,
namely based on Kelvin modes, is proposed by Desmorat and Marull (2011). This criterion is adapted to describe the ten-
sion–compression yielding asymmetry, however an incomplete elasto-plastic model is presented therein.

The hardening behaviour of metals was observed in the experimental data reported by Phillips and Liu (1972), Ikegami
(1979), Kim and Yin (1997), Khan and Jackson (1999), Hahm and Kim (2008), etc. A constitutive viscoplastic model of cyclic
plasticity proposed by Yoshida (2000) and Yoshida et al. (2002) is able to describe the complex behaviour exhibited by cer-
tain steel sheets during the reverse loading. These authors experimentally emphasized the transient Baushinger strain and
the permanent softening, where the reverse work hardening rate is lower than that during a forward deformation described
by some kinematic and hardening rules. The tensorial hardening variable, i.e., the so-called back stress, is described by an
evolution equation of the type proposed by Chaboche and Rosselier (1983) and Chaboche (2008). In order to improve the
numerical prediction of the model when comparison with experimental data is performed, the Armstrong and Frederick
(1966) hardening rule with two material constants is used by Taherizadeh et al. (2011, 2010). In Chung et al. (2005), the
combined isotropic-kinematic hardening rule (formulated on the modified equivalent plastic work principle during a unidi-
mensional process) is applied to the non-quadratic anisotropic yield function proposed by Barlat et al. (2003) in the plane
stress state. In order to account for the Baushinger effect, the transient behaviour and permanent softening an improvement
of the combined isotropic-kinematic hardening model proposed by Chung et al. (2005), has been elaborated in Verma et al.
(2011). The two function parameters, which characterize the hardening law and are actually the slopes of the back stress
evolutions, have been determined from the experimental hardening curves in uniaxial tension–compression tests. The
Chung and Park (accepted for publication) consistency condition of ‘‘the combined type isotropic-hardening law of aniso-
tropic yield functions with the full isotropic hardening law under the monotonously proportional loading’’ becomes useful
to simplify the description of physical phenomena with theoretical arguments, similar to those related to the uniaxial pro-
cess in the direct and reversal directions, and find the material function parameters.

In the present paper we do not make speculations having in mind the evolution equation for hardening variables and the
yield function representation only, but we analyze the material response under uniaxial tensile test, i.e., under a proportional
deformation process, based on the solution of the differential system which describes the model.

Plastic anisotropy is produced by the texture and lattice classes which characterize the metal microstructure and implies
the distorsion of the yield surface shape and its evolution and the Baushinger effect, which is produced by a residual stress
distribution, i.e., the so-called back stress, see Boehler, 1983. Various approaches to describe the anisotropy can be found in
Please cite this article in press as: Cleja-T�igoiu, S., Iancu, L. Orientational anisotropy and strength-differential effect in orthotropic elasto-
plastic materials. Int. J. Plasticity (2013), http://dx.doi.org/10.1016/j.ijplas.2013.01.005
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the literature. One method is based on the assumption concerning the existence of a symmetry group which renders consti-
tutive function invariants, i.e., expressed in terms of an appropriate list of structural tensorial or scalar invariants, see for
instance in Boehler (1983), Dafalias (1985), Cleja-T�igoiu and Soós (1989), Cleja-T�igoiu and Soós (1990), Cleja-T�igoiu
(2000a,b) and Miehe (2002).

In this paper the group of orthotropy is assumed to be g6 characterized by Liu (1982) and Ting (1996) as follows
Please
plastic
g6 ¼ fQ 2 OrtjQni ¼ ni or Qni ¼ �ni; i ¼ 1;2;3g ()
g6 ¼ fQ 2 OrtjQ ðni � niÞ ¼ ni � ni; i ¼ 1;2g;

ð1Þ
where fn1;n2;n3g denotes the orthotropy directions, while Ort denotes the set of all orthogonal transformations.
Another method already mentioned is based on linear transformations which involve the orthotropy, although no direct

reference to the symmetry group (1) has been made. The linear fourth-order tensors which characterize these linear trans-
formations ought to be invariant with respect to the orthotropy group, see also Cazacu et al. (2010), i.e.,
L0ðQrQ TÞ ¼ QL0ðrÞQ T for all Q 2 g6 and for all symmetric second order tensors r: The representation of such fourth-order
tensors is provided (with the symmetry of the pairs of indices) in our notations in Appendix (A4) and it depends on nine
material parameters, see also the comments and representation in Cazacu et al. (2010). The components of the linear trans-
formations, see for instance (Banabic et al., 2003; Barlat et al., 2005), are determined by taking into account the r-value data,
as well as the yield stress data and using the Newton–Raphson iteration method. In order to increase the number of aniso-
tropic coefficients, the n linear orthotropic like transformations have been considered, see (Barlat et al., 2005; Barlat et al.,
2007). Let us remark that the representation of the operator L0 given by (15) from Barlat et al., 2005 and B given by (6) from
Kim et al. (2007) do not have the property of transforming a deviator into a deviator, but the representation (17) from Barlat
et al., 2005 has this property, as well as the appropriate linear transformation derived in Cazacu et al. (2010). Lode’s type
formulae can be seen for instance in Kachanov (1974) and hold for deviator tensors only, are frequently used in the afore
mentioned paper, and thus the tensorial fields have to be deviatoric. In (Barlat et al., 2005, 2007) the yield functions have
been written as functions of the n-set of the principal values associated with the transformed stress tensor via appropriate
transformations. Note that such kind of representations for orthotropic functions is more restrictive than those representa-
tions in terms of the scalar and tensorial invariants that follow as a consequence of the theorems proved by Liu (1982), Wang
(1970), Boehler (1983). We remark that the proper vectors of the transformed tensors via the linear transformations are not
the same and this fact raises a question related to the physical meaning of the algebraic operation with their proper values. In
the above mentioned papers devoted to the yield criteria no references are generally made relative to the evolution law for
plastic strain. We mention that in Barlat et al. (2005) and in Kim et al. (2007), when the plastic flow rule is associated with
the appropriate yield surfaces in terms of the linear transformations, certain singularities arise (when the derivative are ta-
ken) for the stress or strain state that can not be a priori excluded.

� In this paper, we adopt the constitutive framework based on the multiplicative decomposition of the deformation gradi-
ent, F; into its elastic, E, and plastic, P, components called distortions, respectively
F ¼ EP; ð2Þ
within the constitutive framework of elasto-plastic materials with relaxed configurations and internal state variables, which
has been proposed by Cleja-T�igoiu, 1990 and Cleja-T�igoiu and Soós, 1990. In this paper, the elastic distortion E describes the
local mapping from the isoclinic configuration to the deformed configuration. The plastic distortion P characterizes the local
deformation from the reference configuration to the isoclinic configuration. In order to define correctly, on a physical basis,
the elastic and plastic distortions we use the so-called isoclinic configuration introduced by Teodosiu (1970), Mandel (1972),
Kratochvill (1971). The indetermination in choosing the local relaxed configuration, which is attached to the crystalline lat-
tice, has been eliminated by assuming that, in these isoclinic configurations, the corresponding crystalline directions are par-
allel to each other.
� The fact that the plastic distortion leaves the crystalline structure unchanged leads to the physically motivated assump-

tion that the material response is invariant with respect to the geometrical transformations which preserve the crystalline
lattice symmetry. As we fixed a reference configuration, the criterion for choosing the local relaxed configuration, namely
defining the isoclinic configuration, determines uniquely the set of such configurations, apart from the orthogonal maps
contained in the material symmetry group. As a consequence of the material symmetry concept proposed by Cleja-T�igoiu
and Soós (1989), Cleja-T�igoiu and Soós (1990), all constitutive and evolution functions written with respect to the isoclin-
ic configuration have to be invariant with respect to the material symmetry group, see the Theorem 1, below. In the case
considered here, the symmetry group characterizes the orthotropy and this is assumed to be g6:

� The multiplicative decomposition of the deformation gradient has been introduced, for instance, by Kröner (1960), Lee
(1969), Teodosiu (1970), Rice (1971), and so on.
� Following Mandel (1972), we assume that the elastic strains are small, while the elastic rotations are large, i.e.,
E ¼ ReUe ¼ VeRe; Ue ’ Iþ ee; keek � 1 ð3Þ
The elastic rotations, Re, characterizes the passage from the isoclinic configurations to the deformed configurations and these
rotations are described in terms of Euler’s angles denoted by u;w; h; see Cleja-T�igoiu and Iancu (2011).
cite this article in press as: Cleja-T�igoiu, S., Iancu, L. Orientational anisotropy and strength-differential effect in orthotropic elasto-
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� The kinematical consequences of the above hypothesis follow from the relationship between the velocity gradient, L; and
the elastic distortion-rate tensor, Le; and plastic distorsion-rate tensor Lp; as a direct result of the multiplicative decom-
position (2), namely
Please
plastic
L � _FF�1 ¼ Le þ ELpE�1; Le � _EE�1; Lp � _PP�1: ð4Þ
If one takes the symmetric and skew-symmetric parts of (4), then the following formulae yield
D ¼ Re _eeðReÞT þ ReDpðReÞT ;
W ¼ _ReðReÞT þ ReWpðReÞT ;

ð5Þ
where D;Re _eeðReÞT and Dp denote the symmetric parts, and W; _ReðReÞT and Wp stand for the skew-symmetric parts of the
tensors L; Le and Lp, respectively. For general problems related to finite elasto-plastic materials subject to large deformations,
we refer the reader to the books by Mandel (1972), Lubliner (1990), Besseling and Van (1993) and Khan and Huang (1995).
The papers by Dafalias (1985), Dafalias (1993), Dafalias and Rashid (1989), Van der Giessen (1991) and Kuroda (1995) focus
on the concepts of plastic spin and its constitutive description for large strain elasto-plasticity. The notion of plastic spin is
also considered in Badreddine et al. (2010) in the finite elasto-plastic model with a non-quadratic yield function and non-
associated flow rule which is adapted to mixed hardening in the context of the ductile damage. The notion of plastic spin
is also considered in Badreddine et al. (2010) in the finite elasto-plastic model with a non-quadratic yield function and
non-associated flow rule which is adapted to mixed hardening in the context of the ductile damage.
Han et al. (2002) mention: ‘‘although the reorientation of anisotropic directions seems apparently for steel sheet metals, a
proper computational treatments for practical applications particularly in sheet forming processes are quite rare.’’ Han et al.
(2002) consider the Lee type multiplicative decomposition of the deformation gradient, see Lee (1983) and the comments
made by Cleja-T�igoiu (1990),
F ¼ VeR�U
p; ð6Þ
with R� ¼ ReRp derived as a composition of the previously introduced elastic and plastic rotations. Thus in the case of small
elastic strains one obtains F � RU ¼ R�U

p; i.e., R ¼ R�;U ¼ Up: The directional axes of the yield rotate according to
_RR�1 ¼W�xp with the expression for the plastic spin in the actual configuration taken from Kuroda, 1997. The model
of associative plasticity is described in terms of Mandel’s stress tensor, which is assumed to be symmetric. The symmetry
of the Mandel stress tensor does not generally hold. For the discussion concerning the dissipative restrictions in finite aniso-
tropic elasto-plasticity we make reference to Lubliner (1990), Cleja-T�igoiu (2003).

� The presence of the plastic spin, Wp; in these models makes possible the description of the orientational anisotropy,
namely the change in time of the orthotropy direction, see Kim and Yin (1997) and Dafalias (2000). In the model proposed
herein, the orthotropy directions are changing during the elasto-plastic process and they are characterized by Euler’s
angles. We adapt the representation of the plastic spins proposed by Cleja-T�igoiu (2000a), Cleja-T�igoiu (2007) also used
in the paper by Cleja-T�igoiu and Iancu (2011), to the model dependent on the third invariant of the stress.
� The associated flow rule describes the plastic stretching in terms of the constitutive function N̂p; while the plastic spin

characterizes the skew-symmetric part of the plastic distorsion-rate tensor in terms of X̂p and with respect to the actual
configuration. We make herein an attempt to develop a hardening model, which includes the kinematic hardening with
Armstrong and Frederick (1966) law adapted to orthotropic materials, and isotropic hardening, and complies with the
experimentally observed plastic yield and flow behaviour in cyclic loading reported by Verma et al. (2011), and orienta-
tional anisotropy emphasized by Kim and Yin (1997) and Hahm and Kim (2008). In Cleja-T�igoiu (2007) and Cleja-T�igoiu
and Iancu (2011), a quadratic yield function and kinematic hardening were considered only.
� By pushing away to the actual configuration the material response, the constitutive and evolution functions become func-

tions dependent on the Cauchy stress, tensorial hardening variable and orientational axes of orthotropy. The change in
time of the orthotropic axes, ni; is characterized by the elastic rotation, Re; namely mi ¼ Reni; with the elastic spin,
xe ¼ _ReðReÞT ; expressed as a consequence of the kinematic relationships by xe ¼W� Reðf _PðPÞ�1gaÞðReÞT : The motion
of the orthotropy axes is described in terms of Euler’s angles, w; h and u; which characterize the elastic rotation. We avoid
herein the discussion concerning the presence of a certain plastic spin related to the substructure and which is different
from the kinematic plastic spin, see the point of view of Dafalias (1985), Ulz (2011) and Han et al. (2002).
� Once the complete set of rate type evolution equations has been defined in such a way to achieve the compatibility with

the experimental data, the rate type boundary value problem can be solved using a variational inequality, together with
the update procedure provided by Cleja-T�igoiu and Matei (2012).
� Note that the representation theorems for anisotropic invariants provided by Liu (1982) and those corresponding to iso-

tropic invariants given by Wang (1970) are applied everywhere in the present paper. We recall here a basic result.

Theorem 1.

1. A function f is invariant with respect to the group g6 in the isoclinic configuration, i.e., that f is an orthotropic function, if and only
if there exists a function, say f̂ ; which is isotropic with respect to the set of all variables mentioned below and given such that
cite this article in press as: Cleja-T�igoiu, S., Iancu, L. Orientational anisotropy and strength-differential effect in orthotropic elasto-
materials. Int. J. Plasticity (2013), http://dx.doi.org/10.1016/j.ijplas.2013.01.005
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f ðBÞ ¼ f̂ ðB;n1 � n1;n2 � n2Þ; ð7Þ
holds for any B in the definition domain of function f and the tensorial orientational variables from the definition of the symmetry
group.
2. For any elastic rotation Re 2 Ort
Ref̂ ðB;n1 � n1;n2 � n2ÞðReÞT ¼ f̂ ðB̂;m1 �m1;m2 �m2Þ; ð8Þ
where either B̂ :¼ ReBðReÞT if B 2 Lin or bB ¼ B if B 2 R; while mi ¼ Reni: Function f̂ in the actual configuration is also isotropic,
namely 8Q 2 Ort the following identity holds
Q f̂ ðB̂;m1 �m1;m2 �m2ÞðQ ÞT ¼ f̂ ðQ B̂ðQ ÞT ;Qm1 � Qm1;Qm2 � Qm2Þ: ð9Þ
As a final remark, if f is a scalar valued function, then f̂ is given by isotropic invariants built with the set of tensorial fields
mentioned above, see for instance the expressions of the yield function (25) and (26). If f is a tensor valued function, then f̂ is
represented in an appropriate tensorial basis with the coefficients expressed like scalar orthotropic functions, see for in-
stance the constitutive expression for the plastic spin representation (35) and the constitutive function which describe
the hardening (38).

Although we do not deal here with the problem related to the thermodynamics of irreversible processes, in the case of the
isothermal processes, we make reference to the paper by Cleja-T�igoiu (2003), concerning this subject within the constitutive
framework of finite elasto-plasticity. The existence of the stress potential (i.e., the material with the hyperelastic property), as
well as the reduced dissipation inequality, under the form of the so-called principle of maximum plastic dissipation were pro-
vided, based on the Il’yushin type dissipation postulate formulated by Cleja-T�igoiu (2003). The consequences of the dissipa-
tion postulated were analyzed in relationships with Drucker’s postulate (just in condition of isotropic material given by
Lucchesi and Podio-Guidugli (1990)), Lubliner’s flow rule in Lubliner (1990) and standard dissipative models, see Nguyen
(1994). In this paper we suppose that the plastic stretching is directed to the normal to the yield surface, F̂ ðp;aÞ ¼ 0; a being
a stress-like tensorial internal variable, while the evolution of the tensorial hardening variable has been postulated in the form
Armstrong and Frederick (1966) rule, adapted to the orthotropic materials, hence the full associated flow rule does not occur.

Notations
Lin and Linþ denote the set of all second order tensors and the invertible ones, respectively, while Sym � Lin is the set of

symmetric tensors.
F 2 Linþ is the deformation gradient.
fn1;n2;n3g are the initial orthotropy axes; fm1;m2;m3g denote the actual orthotropy axes, namely mi ¼ Reni.
D
Dt ð	Þ is the objective derivative associated with the elastic spin.
A 	 B is the scalar product between A; B 2 Lin represented by A 	 B ¼ AijBij in terms of the in Cartesian components of the

tensors, while a 	 b � aibi is the scalar product between the vectors a; b; for any A 2 Lin the trace trA is defined as the real
number given by trA ¼ Aii; in terms of the Cartesian components Aij.

a� b 2 Lin denotes the tensorial product of the vectors a and b; defined for any vector v by ða� bÞv ¼ ðb 	 vÞa.
T is the Cauchy stress tensor, A is the kinematic hardening variable, and j is the scalar hardening variable in the actual

configuration.
p is the Piola–Kirchhoff symmetric tensor, a is the tensorial hardening variable in the relaxed configuration.
a� b denotes the tensorial product of vectors a and b and a� b ¼ aibjii � ij.
F̂ is the yield function; f is the error function.
l̂; b are the plastic factors; hc is the hardening parameter.
rY is the yield stress in tensile test.
Ê is the fourth order elasticity tensor given for orthotropic case in Appendix (A4); aij are the elastic material constants; Kij

are yield parameters characterizing second order terms; Bk are yield parameters referring to third order terms; ck; dk; xc; yc; zc

are hardening constants; Aj;gk; ~gk are plastic spin constants.
w; h;u are Euler’s angles, namely the proper rotation u, nutation h; and precession w.
H is the Heaviside function, i.e., HðxÞ ¼ 1 if x P 0; and HðxÞ ¼ 0 if x < 0.
< b >¼ 1

2 ðbþ jbjÞ denotes the positive part of the real function b.
Due to the large diversity existing in the terminology corresponding to finite elasto-plasticity, we adopted the most fre-

quently used expressions, which also cover the content of the paper, as can be found, for instance, in the book by Gurtin et al.
(2010):

D ¼ fLgs and De ¼ fLegs denote the symmetric parts, and are called the stretching and the elastic stretching, respectively,
while W ¼ fLga; and We ¼ fLega are the skew-symmetric part of the appropriate tensorial fields and they are called the spin
and the elastic spin, respectively.

Re is the elastic rotation; ee is the small elastic strain; xe is the elastic spin; Xp is the plastic spin.
E and P denote the elastic and plastic distortions.
Le; Lp are called elastic and plastic distortion-rate tensors.
Ue;Ve symmetric and positive definite tensors which enter the polar decomposition of the elastic distortion, namely

E ¼ ReUe ¼ VeRe; are called elastic stretch tensors.
cite this article in press as: Cleja-T�igoiu, S., Iancu, L. Orientational anisotropy and strength-differential effect in orthotropic elasto-
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2. Constitutive framework in the deformed configuration

In this paper, first we describe the behaviour of material with respect to local, relaxed, isoclinic configurations and the
constitutive and evolution functions are assumed to be invariant with respect to the orthotropic symmetry group, g6: We
denote by p;a;j; ee and ni the Piola–Kirchhoff stress tensor, tensorial internal variable, small elastic strain tensor and ortho-
tropy direction in K, respectively. The internal variables used in the model proposed herein, assumed to be a symmetric and
traceless tensor of Piola–Kirchhoff type (usually called back stress), a; which is a stress-like variable and a scalar field j;
which can be either the equivalent plastic strain or the plastic work, see Khan and Huang (1995), Chung and Park (accepted
for publication). It was clearly mentioned that a characterizes the translation motion of the yield surface in the stress space,
while j characterizes the change in the shape of the yield surface.

As a consequence of the representation Theorem 1 we introduce the following assumptions:
Ax. The material response is linear elastic with respect to the isoclinic configuration and is expressed in terms of the Pio-

la–Kirchhoff symmetric stress tensor by
Please
plastic
p ¼ EðeeÞ � bEðn1 � n1;n2 � n2Þ½ee
: ð10Þ
The the linear orthotropic elastic type constitutive is written in the formula (A4) in the orthotropic basis.

� The plastic distortion-rate tensor is assumed to be given in terms of its symmetric and skew-symmetric parts, N̂p and X̂p,
respectively, namely
d
dt

PðPÞ�1 ¼ l̂ðN̂pðp;a;j;n1 � n1;n2 � n2Þ þ X̂pðp;a;j;n1 � n1;n2 � n2ÞÞ ð11Þ
Remark. The plastic distortion-rate _PðPÞ�1 is power conjugated in isoclinic configuration with the Mandel stress measure,
R ¼ Cep;Ce ¼ ET E; which is not generally a symmetric tensor. This result follows from the expression of the internal power
T 	 L; if the velocity gradient is replaced by its expression (4). If the elastic stretch tensor, Ue; is small (just this is the case in
this paper), then R ’ p: Thus the Mandel’s type tensor coincides with the Piola–Kirchhoff stress tensor in the isoclinic con-
figuration. This is the rationale for using the symmetric Piola–Kirchhoff as a measure of the stress in the expression of the
constitutive functions, expressed with respect to the isoclinic configuration.

� We add the evolution equations for the hardening variables

For any given smooth history of the deformation t ! FðtÞ, the time evolution of the fields fa;jg; for fixed nk; is described by
the differential type system
_a ¼ l̂l̂ðp;a;j;n1 � n1;n2 � n2Þ;
_j ¼ l̂b̂ðp;a;j;n1 � n1;n2 � n2Þ;
_nk ¼ 0; k ¼ f1;2;3g

ð12Þ
Since the local, relaxed configurations are considered to be isoclinic, the orientation of these configurations is kept un-
changed during the process, i.e., _nk ¼ 0:

� Here l̂ is the plastic multiplier associated with the yield criterion and is defined in terms of the yield function F̂
F̂ ðp;a;j;n1 � n1;n2 � n2Þ ¼ 0 ð13Þ
such that the following relations are satisfied
l̂ P 0; F̂ 6 0; l̂F̂ ¼ 0 Khun—Tucker condition

l̂ _̂F ¼ 0 consistency condition
ð14Þ
An explicit formula can be given for the plastic multiplier, l̂, written by using the evolution equation for the plastic distor-
tion and the hardening variable in terms of the stretching D can be derived as a consequence of the consistency condition,
namely
l̂ ¼ 1
hc
< b > HðF̂Þ;

b ¼ Ê½N̂p
 	 D; hc ¼ Ê½N̂p
 	 N̂p þ N̂p 	 l̂� @jF̂ b̂;
ð15Þ
if the yield function is dependent on the effective stress p� a and the hardening parameter ĥc is positive.
cite this article in press as: Cleja-T�igoiu, S., Iancu, L. Orientational anisotropy and strength-differential effect in orthotropic elasto-
materials. Int. J. Plasticity (2013), http://dx.doi.org/10.1016/j.ijplas.2013.01.005
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The fields p;a; ee;ni pushed forward to the actual configuration are defined by
Please
plastic
T ¼ RepðReÞT ; A ¼ ReaðReÞT ; ee :¼ ReeeðReÞT ; mi ¼ Reni; ð16Þ

since the elastic rotation characterizes the passage from the isoclinic configuration to the actual configuration. These fields
have the meaning of Cauchy stress, internal tensorial variable, small elastic strain and actual orientational variable, respec-
tively, all of these written with respect to the actual configuration.

When we take the time derivative of (10) we get
d
dt

p ¼ Êðn1 � n1;n2 � n2Þ
d
dt
ðeeÞ

� �
()

Re d
dt

p

� �
Reð ÞT ¼ RebEðn1 � n1;n2 � n2Þ

d
dt
ðeeÞ

� �
ðReÞT ;

ð17Þ
using the linearity of the elastic constitutive equation. As a direct consequence of the Theorem 1 from the last rate type con-
stitutive equation derived in (17) we derive in the actual configuration
Re d
dt

p

� �
Reð ÞT ¼ bEðm1 �m1;m2 �m2Þ Reð d

dt
ðeeÞÞðReÞT

� �
ð18Þ
Further, when the fields are pushed away to the actual configuration, the objective time derivatives for the appropriate
transformed fields T;A; e;mi appear through the following relationships
D
Dt
ðTÞ ¼ _T�xeTþ Txe � Re _pðReÞT

D
Dt

mk :¼ _mk �xemk; where xe ¼ _ReðReÞ�1
ð19Þ
Relations similar to T also hold for e and A: The objective derivative of the fields T;A; ee; and mi defined in the actual con-
figuration are associated with the elastic spin.

The plastic distortion-rate tensor is pushed forward to the actual configuration, and its symmetric part, i.e., the plastic
stretching, in the actual is given by
ReDpðReÞT ¼ l̂N̂pðT;A;j;m1 �m1;m2 �m2Þ; ð20Þ
while its skew-symmetric part, i.e., the plastic spin, is postulated to be written as
ReWpðReÞT ¼ l̂X̂pðT;A;j;m1 �m1;m2 �m2Þ: ð21Þ
The elastic spin is defined as a consequence of the relationships (5) and (21)
xe ¼W� l̂X̂pðT;A;j;m1 �m1;m2 �m2Þ: ð22Þ
We eliminate the rate of small elastic strain from the rate type constitutive equation derived in (18), using the kinematic
relationship (5) together with (20). If we add the evolution equations for the hardening variables, again pushed away to
the actual configuration, the following statements hold:

Theorem 2. For any given smooth history of the deformation t ! FðtÞ, the time evolution of the fields fT;A;j;mkg is described by
the differential type system
D
Dt

T ¼ Êðm1 �m1;m2 �m2Þ½D
 � l̂Êðm1 �m1;m2 �m2Þ½N̂p
;

D
Dt

A ¼ l̂l̂; _j ¼ l̂b̂;
D
Dt

mk ¼ 0;
ð23Þ
where the objective derivative D
Dt acts on the fields defined by formulae (19) together with (22). The arguments of the hat function

are T;A;j;m1 �m1;m2 �m2:

The initial conditions are introduced in the form Tðt0Þ ¼ 0;Aðt0Þ ¼ 0;jðt0Þ ¼ 0;miðt0Þ ¼ ni; i ¼ 1;2;3.
Further, we do not mention the arguments of the hat function, namely T;A;j;m1 �m1;m2 �m2 or ðm1 �m1;m2 �m2Þ;

unless this is necessary.
The effective stress S ¼ T� A is introduced since A has the meaning of the back stress. The back stress influences the posi-

tion of the yield surface in the stress space.
Sij ¼mi 	 ðT� AÞmj i; j ¼ 1;2;3; denote the components of the fields with respect to the actual orientational axes.

3. Yield function dependent on the third order invariant

We introduce a Drucker type yield function, which is dependent on the effective stress, i.e., S ¼ T� A; and the scalar hard-
ening j; in a new approach based on the g6� invariance assumption.
cite this article in press as: Cleja-T�igoiu, S., Iancu, L. Orientational anisotropy and strength-differential effect in orthotropic elasto-
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Ax. Yield function is represented in terms of three scalar valued functions as
Please
plastic
F̂ :¼ ðf̂ 2Þ3=2 � cf̂ 3 � F ¼ 0; ð24Þ
where

� f̂ 2 is g6 invariant and homogeneous of the second degree, while
� f̂ 3 is g6 invariant and homogeneous of the third degree with respect to the effective stress;
� function F ¼ FðjÞ describes the scalar hardening and depends on j only.

The yield function written on the left hand side of (24) has an expression suggested by the initial like yield condition pro-
posed by Cazacu and Barlat (2001) and used in Cazacu and Barlat (2004) and Nixon et al. (2010).

Here we use the representation theorems of Liu (1982) and Wang (1970) and, consequently, the g6 invariant functions f2

and f3 will be described as functions dependent on the scalar invariants generated by S 2 Sym and orientational variables
m1 �m1;m2 �m2 2 Sym; as we mentioned in Theorem 1.

Theorem 3. The homogeneous of the second degree and g6 invariant function f2 is represented using nine material parameters Ci
f̂ 2ðT;A;m1 �m1;m2 �m2Þ ¼ C1S 	 Sþ C2S2 	 ðm1 �m1Þ þ C3S2 	 ðm2 �m2Þ þ C4ðS 	 ðm1 �m1ÞÞ2 þ C5ðS 	 ðm2

�m2ÞÞ2 þ C6ðS 	 ðm1 �m1ÞÞðS 	 ðm2 �m2ÞÞ þ C7ðtrðSÞÞ2 þ C8trðSÞðS 	 ðm1 �m1ÞÞ
þ C9trðSÞðS 	 ðm2 �m2ÞÞ ð25Þ
2. The homogeneous of third degree and g6 invariant function f3 allows a representation in terms of the basic set of invariants
involving nineteen material constants
f̂ 3ðT;A;m1 �m1;m2 �m2Þ ¼ B1ðS 	 SÞðS 	 ðm1 �m1ÞÞ þ B2ðS 	 SÞðS 	 ðm1 �m1ÞÞ þ ½S2 	 ðm1 �m1Þ
ðB3S 	 ðm1

�m1Þ þ B4S 	 ðm2 �m2ÞÞ þ ½S2 	 ðm2 �m2Þ
ðB5S 	 ðm1 �m1Þ þ B6S 	 ðm2 �m2ÞÞ

þ B7ðS 	 ðm1 �m1ÞÞ2ðS 	 ðm2 �m2ÞÞ þ B8ðtrðSÞÞ3 þ B9trðS3ðm1 �m1ÞÞ

þ B10trðS3ðm2 �m2ÞÞ þ B11ðS 	 ðm1 �m1ÞÞðS 	 ðm2 �m2ÞÞ2 þ B12ðS 	 ðm1 �m1ÞÞ3

þ B13ðS 	 ðm2 �m2ÞÞ3 þ trðSÞðB14S2 	 ðm1 �m1Þ þ B15S2 	 ðm2 �m2ÞÞ

þ ðtrSÞ2ðB16S 	 ðm1 �m1Þ þ B17S 	 ðm2 �m2ÞÞ þ B18trðS3Þ þ B19trðSÞtrðS2Þ ð26Þ
Generally, the material parameters Ci; i 2 f1; . . . ;9g and Bi i 2 f1; . . . 19g could depend on the scalar hardening variable j:
Here we restrict ourselves at the hypothesis that Ci, Bi are constant.

Remarks:
Some peculiar properties of the yield function (24) could be emphasized:

� Apart from the yield function considered in Cleja-T�igoiu (2007), f2 contains all g6 invariants that generate a second order
homogeneous function with respect to the effective stress. If we compare f2 with the yield function introduced by Cleja-
T�igoiu (2007), which is independent of trðSÞ; we can conclude that the two yield functions coincide if and only if
C7 ¼ C8 ¼ C9 ¼ 0 and c ¼ 0: Hill’s quadratical yield function with mixed hardening but no evolution of the orthotropic
axes is used in Vladimirov et al. (2011) and Tang et al. (2008).
� For c – 0, the third invariant of the tensor S is involved in the definition of the yield function.
� Cazacu and Barlat (2004) proposed the yield function in the form ðJ2Þ

3=2 � c J3 ¼ s3
Y : In the aforementioned paper, f2 and f3

are expressed by the stress components with respect to the orthotropy directions (in the deformed configuration), and
not in terms of the appropriate invariants of the stress. There is no evolution equation which could describe the motion
of the orthotropy axes with respect to time. Consequently, the yield function is viewed in the fixed axes since the motion
of the orthotropy axes with respect to time is not described at all.

Function f2 allows a representation with respect to components Sij of the following type
f̂ 2ðT;A;m1 �m1;m2 �m2Þ ¼ K11S2
11 þ K22S2

22 þ K33S2
33 þ Km1S2

12 þ Km2S2
13 þ Km3S2

23 þ K12S11S22 þ K13S11S33

þ K23S22S33 ð27Þ
where the new material parameters Kij, as functions of fCi; i . . . 9g, are presented in (A1).

Proposition 1. The sufficient conditions that ensure the yield function to be pressure insensitive can be derived from the
restrictions
cite this article in press as: Cleja-T�igoiu, S., Iancu, L. Orientational anisotropy and strength-differential effect in orthotropic elasto-
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Please
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f̂ jð�S� pI;m1 �m1;m2 �m2Þ ¼ f̂ jð�S;m1 �m1;m2 �m2Þ; for j ¼ 2;3; ð28Þ
8 �S 2 Sym; as the relationships between yield constants
K12 ¼ K33 � K11 � K22; K13 ¼ K22 � K11 � K33; K23 ¼ K11 � K22 � K33 ð29Þ
and
B11 ¼ �B4 � B5 � B7; B12 ¼ ð1=3Þð�2B3 � B7Þ;B13 ¼ ð1=3ÞðB4 þ B5 � 2B6 þ B7Þ;
B14 ¼ ð1=3Þð�B3 � B4 � 3B9Þ; B15 ¼ ð1=3Þð�B5 � B6 � 3B10Þ;
B16 ¼ ð1=9Þð�3B1 þ B3 þ B4 þ 3B9Þ;
B17 ¼ ð1=9Þð�3B2 þ B5 þ B6 þ 3B10Þ;
B18 ¼ ð1=18Þð�9B1 � 9B2 þ B3 þ B4 þ B5 þ B6 þ 81B8 þ 3B9 þ 3B10Þ;
B19 ¼ ð1=18Þð3B1 þ 3B2 � B3 � B4 � B5 � B6 � 81B8 � 3B9 � 3B10Þ;

ð30Þ
hold.
Remark The initial yield function (24) for a pressure insensitive material is characterized by sixteen yield constants, out

of which six refer to function f2; namely Kij introduced by (27) together with (29), and ten refer function f3; namely
Bk; k ¼ 1; . . . 10.

Proposition 2.
1. Function f̂ 2 has the following component representation
f̂ 2 ¼
1
2
ðK11 þ K22 � K33ÞðS11 � S22Þ2 þ

1
2
ðK11 þ K33 � K22ÞðS11 � S33Þ2 þ

1
2
ðK22 þ K33 � K11ÞðS22 � S33Þ2 þ Km1S2

12

þ Km2S2
13 þ Km3S2

23 ð31Þ
2. The pressure insensitive yield function (27), i.e., as given by (31), is positive definite if and only if
K11 þ K22 � K33 > 0; K11 þ K33 � K22 > 0; K22 þ K33 � K11 > 0; Km1 > 0; Km2 > 0; Km3 > 0 ð32Þ
We can recover the quadratic expression for the components of the stress tensor with respect to the orthotropic axes,
which enter the expression of the Hill (1948) criterion, if we introduce the notations in (31),
F ¼ 1
2
ðK22 þ K33 � K11Þ; G ¼ 1

2
ðK11 þ K33 � K22Þ;

E ¼ 1
2
ðK11 þ K22 � K33Þ; 2L ¼ Km3; 2M ¼ Km2; 2N ¼ Km1:
Proposition 3. The pressure insensitive function f̂ 3 can be expressed in terms of the stress components Sij ¼mi 	 Smj as
f̂ 3 ¼ k1S3
11 þ k2S3

22 þ k3S3
33 þ k4S2

11S22 þ k5S2
11S33 þ k6S2

22S11 þ k7S2
22S33 þ k8S2

33S11 þ k9S2
33S22 þ k10S2

12S11

þ k11S2
12S22 þ k12S2

12S33 þ k13S2
13S11 þ k14S2

13S22 þ k15S2
13S33 þ k16S2

23S11 þ k17S2
23S22 þ k18S2

23S33 þ k19S11S22S33

þ k20S12S13S23 ð33Þ
where the constants ki; i 2 f1; . . . 20g are given in (A2), (A3) and depend on the material constants previously introduced
Bj; j 2 f1; . . . ;10g.
4. Orthotropic model dependent on the third invariant of the stress

1. The plastic distortion-rate tensor pushed forward to the actual configuration is proposed to be given by its symmetric and
skew-symmetric parts, N̂p and X̂p, respectively, in (11).

2. The flow rule associated with the yield surface (24) defines the symmetric part of the plastic distortion-rate tensor,
namely the plastic stretching, in the deformed configuration as
ReDpðReÞT ¼ l̂N̂p with N̂p ¼ @TF̂ �
3
2

ffiffiffiffiffi
f̂ 2

q
@T f̂ 2 � c@T f̂ 3; ð34Þ
namely ð@T f̂ kÞii :¼mi 	 ð@T f̂ kÞmi ¼ @Tii
f̂ k; i 2 f1;2;3g; and

ð@T f̂ kÞij :¼mi 	 ð@T f̂ kÞmj ¼ 1
2 @Tij

f̂ k; i; j ¼ f1;2;3g; i – j:
cite this article in press as: Cleja-T�igoiu, S., Iancu, L. Orientational anisotropy and strength-differential effect in orthotropic elasto-
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3. Three types of plastic spins, namely three constitutive functions X̂p; are proposed herein. In order to provide the isotropic
functions which take the skew-symmetric values, we use the representation theorems of Wang (1970).
� On assuming that the plastic spin is generated by S and the orientational variables m1 �m1;m2 �m2; which gener-

alizes the Mandel type plastic spin (called plastic spin I), we introduce
Please
plastic
X̂p ¼ A1ðSðm1 �m1Þ � ðm1 �m1ÞSÞ þ A2ðSðm2 �m2Þ � ðm2 �m2ÞSÞ þ A3ððm2 �m2ÞSðm1 �m1Þ � ðm1

�m1ÞSðm2 �m2ÞÞ þ A4ðS2ðm1 �m1Þ � ðm1 �m1ÞS2Þ þ A5ðS2ðm2 �m2Þ � ðm2 �m2ÞS2Þ þ A6ððm2

�m2ÞS2ðm1 �m1Þ � ðm1 �m1ÞS2ðm2 �m2ÞÞ: ð35Þ
For A4 ¼ A5 ¼ A6 ¼ 0 the plastic spin is reduced to the linear expression with respect to the effective stress �S: Such type of the
plastic spin is firstly introduced by Dafalias (1985) and Loret (1983). In the class of orthotropic R�model developed by Cleja-
T�igoiu (2000a), a similar (with aforementioned papers) linear representation of the plastic has been proposed in terms of the
non-symmetric Mandel stress measure R: If we take A3 ¼ A4 ¼ A5 ¼ A6 ¼ 0, from the formula (35) we obtain the Mandel type
plastic spin proposed by Cleja-T�igoiu (2007).
� If we assume that the plastic spin (called plastic spin II) is generated by N̂p and the orientational variables

m1 �m1;m2 �m2; we obtain
X̂p ¼ g1ðN̂pðm1 �m1Þ � ðm1 �m1ÞN̂pÞ þ g2ðN̂pðm2 �m2Þ � ðm2 �m2ÞN̂pÞ þ g3ððm2 �m2ÞN̂pðm1 �m1Þ

� ðm1 �m1ÞN̂pðm2 �m2ÞÞ þ g4ððN̂pÞ2ðm1 �m1Þ � ðm1 �m1ÞðN̂pÞ2Þ þ g5ððN̂pÞ2ðm2 �m2Þ � ðm2 �m2Þ

� ðN̂pÞ2Þ þ g6ððm2 �m2ÞðN̂pÞ2ðm1 �m1Þ � ðm1 �m1ÞðN̂pÞ2ðm2 �m2ÞÞ ð36Þ
Remark. When an associated flow rule with a quadratic yield function is considered, the representations (35) and (36) be-
come equivalent. Formula (36) for g4 ¼ g5 ¼ g6 ¼ 0 is reduced to the Liu–Wang type spin proposed in Cleja-T�igoiu (2007).
� When the plastic spin is generated by S, N̂p and the orientational variables, the expression of the plastic spin (called

plastic spin III) can be derived in the following form

p p p p p p p
X̂ ¼ ~gðSN̂ � N̂ SÞ þ ~g1ðSN̂ ðm1 �m1Þ � ðm1 �m1ÞN̂ SÞ þ ~g2ðSN̂ ðm2 �m2Þ � ðm2 �m2ÞN̂ SÞ þ ~g3ððm2

�m2ÞN̂pSðm1 �m1Þ � ðm1 �m1ÞSN̂pðm2 �m2ÞÞ ð37Þ
For ~gk ¼ 0; k ¼ 1;2;3; the plastic spin III is reduced to the non-coaxiality law, between �S and the plastic flow rule, that has
been derived by Bammann and Aifantis (1987), Paulum and Percherski (1987), Zbib and Aifantis (1988), Van der Giessen
(1991) and Kuroda (1995). Formula (37) does not contain an appropriate complete set of skew-symmetric invariants. If
~g1 ¼ ~g2 ¼ ~g3 ¼ 0, then the Dafalias type spin introduced in Cleja-T�igoiu (2007), see also Cleja-T�igoiu and Iancu (2011),
can be derived. For comparison, we also refer the reader to Dafalias (2000).
4. We introduce an evolution equation for the tensorial hardening variable in the actual configuration as an Armstrong–
Frederick type hardening law adapted to the orthotropic material
D
Dt

A ¼ ll̂ðT;A;j;m1 �m1;m2 �m2Þ; where

l̂ ¼ c0N̂p þ c1½N̂pðm1 �m1Þ þ ðm1 �m1ÞN̂p
 þ c2½N̂pðm2 �m2Þ þ ðm2 �m2ÞN̂p
 � b̂ðT;A;j;m1 �m1;m2

�m2Þ½d0Aþ d1ðAðm1 �m1Þ þ ðm1 �m1ÞAÞ þ d2ðAðm2 �m2Þ þ ðm2 �m2ÞAÞ
 ð38Þ
where c0; c1; c2; d0; d1; d2 are material constants.

Remark. Eq. (38) would become of the Prager type, (see Khan and Huang (1995), Chung and Park (accepted for publication))
and not of the Prager–Ziegler type, provided that the following equalities hold: c1 ¼ c2 ¼ 0; d0 ¼ d1 ¼ d2 ¼ 0: Eq. (38) can be
reduced to the Prager type hardening law adapted to the orthotropic material in Cleja-T�igoiu (2007) if d0 ¼ d1 ¼ d2 ¼ 0;
which have been considered in Cleja-T�igoiu and Iancu (2011). Moreover, if we consider that only c0 and d0 are non-vanishing
parameters in Eq. (38), the non-associative hardening law DA

Dt ¼ c0l @TF � d0A _j can be derived. Within the constitutive
framework of small strains, with a similar hardening law and parameters c0 and d0 as functions of j; Chung and Park (ac-
cepted for publication) introduced and analyzed the corresponding consistency condition (which should not be considered
as the consistency condition from rate-independent plasticity) of coupled isotropic and kinematic hardening with isotropic
hardening under the proportional loading. However, our aim is to analyze a mathematical model that does not satisfy the
aforementioned relations. Only if these five constants are not vanishing, i.e., when we take into account the influence of
the orthotropy on the hardening, it is possible to determine their values to be compatible with the experimental data given
by Verma et al. (2011).
5. The evolution equation for the scalar hardening variable, j; in the actual configuration is given by
_j ¼ l̂b̂ðT;A;j;m1 �m1;m2 �m2Þ: ð39Þ
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6. Two types of scalar hardening variables can be introduced in the model:
(a) j is the equivalent plastic strain and it can be given by the evolution equation
Please
plastic
_j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D̂pðtÞ 	 D̂pðtÞ

q
; ð40Þ
with the appropriate scalar hardening function, i.e., Swift-type function, given by
FðjÞ ¼ r3
Yðkjþ 1Þ3n

; when b̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N̂p 	 N̂p

p
: ð41Þ

(b) j evaluates the plastic work and it is characterized by

_j ¼ �SðtÞ 	 D̂pðtÞ; ð42Þ

with the associated scalar hardening functions prescribed by the Voce-type function
FðjÞ ¼ r3
Yðxc þ yce�zcjÞ3; when b̂ ¼ 1

rY ðxc þ yce�zcjÞ S 	 N̂
p ð43Þ
where k;n; xc; yc; zc are material constants.
Notice the essential difference, _j can not be negative during an elasto-plastic processes in the case (a), in contrast with

the case (b), when the change in the sign of _j is allowed. Just the changing in the sign of _j during the processes in the case
(b), could be useful to make the difference between tension and compression processes and could certificate the rationale in
selection of the scalar hardening variable done by Verma et al. (2011). ‘‘In the simulation of metals forming, modelling the
flow stress as an average behaviour of material over a deformation range is more important than determining an initial yield
locus of the material,’’ see the assertion in Verma et al. (2011).

Remarks. The scalar function FðjÞ of Swift-type has been used in Banabic et al. (2003), while Verma et al. (2011) used the
scalar function of Voce-type, which are here adapted for homogeneous functions of the third degree with respect to the
effective stress.

5. Orientational orthotropy and Euler angles

Herein, we resume the procedure previously introduced by Cleja-T�igoiu and Iancu (2011) and which allows us to char-
acterize the motion of the orthotropic axes during the deformation process in terms of three angles, namely the so-called
Euler angles, see Beju et al. (1983).

Three set of othogonal axes is introduced

� j1; j2; j3 represent the fixed orthonormal basis, say the geometric axes of a sheet,
� n1;n2;n3 are the initial orthotropy directions that characterizes the orthotropy direction in the so-called relaxed (or plas-

tically deformed) configuration, generally different from the axes of the sheet,
� m1;m2;m3 are the orthotropy directions in the actual configuration, which satisfy the initial condition miðt0Þ ¼ ni; i = 1, 2,

3, see Fig. 1.

We denote by R 2 Ort the rotation tensor which characterizes the position of the orthotropy axes mi with respect to the
fixed axes ji; namely Rjk ¼mk; k ¼ 1;2;3.

The initial position of the orthotropy axes ni with respect to the fixed axes ji is characterized by the rotation tensor,
R0 2 Ort; namely R0ðjkÞ ¼ nk; k ¼ 1;2;3.

The elastic rotation tensor is denoted by Re 2 Ort and it is is related to R by
Renk ¼mk; k ¼ 1;2;3; ReðtÞ ¼ RðtÞðR0Þ�1
; Reðt0Þ ¼ I ð44Þ
m2

j3

j1

m3

j2
θ

m1
ψ

 N

 O

Fig. 1. The sheet and the orthotropy axes in actual configuration.
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The meaning of the Euler angles, which characterize the components Rik ¼ ji 	 Rjk of the rotation tensor R; is described as
follows:

� the nutation h is the angle between the axes m3 and j3;

� the precession w is measured from j1 to the nodal axis denoted by ON, which is the intersection of the planes (j1; j2) and
(m1;m2),
� the proper rotation u is the angle between ON and the axis m1; see Fig. 1.

Let us remark that in the case of a plane rotation, when h ¼ 0, the precession angle w is misleading and is considered to be
zero.

The components of the rotation tensor R can be expressed in terms of the Euler angles by the following formulae
Please
plastic
ðRikÞ ¼
cos w cos u� sin w cos h sin u � sin w cos u� cos w cos h sin u sin h sin u
cos w sinuþ sin w cos h cos u � sin w sin uþ cos w cos h cos u � sin h cos u

sin w sin h cos w sin h cos h

0
B@

1
CA ð45Þ
Note that the elastic spin xe ¼ _ReReT ¼ _RRT with respect to the current orthotropic basis mi �mj has the components
ðxe
ikÞ ¼

0 � _u� _w cos h _h sin u� _w sin h cos u
_uþ _w cos h 0 � _h cos u� _w sin h sin u

� _h sin uþ _w sin h cos u _h cos uþ _w sin h sin u 0

0
B@

1
CA ð46Þ
R0 is characterized by the initial values of the appropriate Euler angles wðt0Þ;uðt0Þ; hðt0Þ:
We introduce the notations for the components of the stretching tensor, D, with respect to the axes fjkg and fmkg; as well

as the motion spin and tensorial hardening variable A
Dik ¼ ji 	 Djk;
eDij ¼mi 	 Dmj; fW ij ¼mi 	Wmj; X̂p

ij ¼mi 	 X̂pmj; Aij ¼mi 	 Amj: ð47Þ
Remark. As it has been noticed by Cleja-T�igoiu (2007), the time derivative of the components of the Cauchy stress with
respect to the actual orthotropic axes are just the projections of the objective derivative taken with respect to the elastic spin,
namely
d
dt
ðmk 	 TmjÞ ¼mk 	

D
Dt
ðTÞmj: ð48Þ
As a direct consequence of this remark and using formula (22), the following result can be proven.
Notice the formal similarity of the differential system which allows to determine the state of the material, namely the

current values of the Cauchy stress, hardening variables and Euler angles, for a given history of the deformation gradient
with the appropriate one proved by Cleja-T�igoiu and Iancu (2011). However the constitutive frameworks are completely
different.

Theorem 4. For a given smooth history of the deformation t ! FðtÞ at a fixed material point, the evolutions with respect to time of
the components of the Cauchy stress, T, and the tensorial hardening variable, A, in the basis mi �mj; the Euler angles, w; h and u,
and the scalar hardening variable, j, are described by the following differential system
d
dt

Tij ¼mi 	 Ê½D
mj � l̂mi 	 ðÊÞ½N̂p
mj

d
dt

Aij ¼ l̂mi 	 l̂mj

_uþ _w cos h ¼m2 	 ðW� l̂X̂pÞm1

� _h sin uþ _w sin h cos u ¼m3 	 ðW� l̂X̂pÞm1

_h cos uþ _w sin h sinu ¼m3 	 ðW� l̂X̂pÞm2

_j ¼ l̂b̂

ð49Þ
where D ¼ f _FðFÞ�1gs and W ¼ f _FðFÞ�1ga
: The above differential system is associated with the yield condition F̂ ¼ 0; while the

plastic factor, l̂, is defined by the formulae (15), while the initial conditions are given by
Aijðt0Þ¼0;jðt0Þ¼0;uðt0Þ¼u0;hðt0Þ¼ h0;wðt0Þ¼w0;Tðt0Þ¼T0 is taken such that F̂ ðT0;0;0;n1�n1;n2�n2Þ<0:
ð50Þ
Remark. If sin h – 0, then the time derivative of the Euler angles can be explicitly expressed and the following theorem
holds.
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Theorem 5. If sin h is not vanishing during a given history of the deformation gradient, then the evolutions with respect to time of
the components of the stress and tensorial hardening variable with respect to the actual orthotropic axes, the Euler angles, w; h and
u, and the scalar hardening variable, j, are characterized by
Please
plastic
_T11 ¼ �l̂ða11N̂p
11ðT;AÞ þ a12N̂p

22ðT;AÞ þ a13N̂p
33ðT;AÞÞ þ eD11a11 þ eD22a12 þ eD33a13

_T22 ¼ �l̂ða12N̂p
11ðT;AÞ þ a22N̂p

22ðT;AÞ þ a23N̂p
33ðT;AÞÞ þ eD11a12 þ eD22a22 þ eD33a23

_T33 ¼ �l̂ða13N̂p
11ðT;AÞ þ a23N̂p

22ðT;AÞ þ a33N̂p
33ðT;AÞÞ þ eD11a13 þ eD22a23 þ eD33a33

_T12 ¼ �l̂a44N̂p
12ðT;AÞ þ eD12a44

_T13 ¼ �l̂a66N̂p
13ðT;AÞ þ eD13a66

_T23 ¼ �l̂a55N̂p
23ðT;AÞ þ eD23a55

_A11 ¼ l̂½ðc0 þ 2c1ÞbNp
11ðT;AÞ � b̂ðT;A;jÞðd0 þ 2d1ÞA11


_A22 ¼ l̂½ðc0 þ 2c2ÞbNp
22ðT;AÞ � b̂ðT;A;jÞðd0 þ 2d2ÞA22


_A33 ¼ l̂½c0
bNp

33ðT;AÞ � b̂ðT;A;jÞd0A33

_A12 ¼ l̂½ðc0 þ c1 þ c2ÞbNp

12ðT;AÞ � b̂ðT;A;jÞðd0 þ d1 þ d2ÞA12

_A13 ¼ l̂ðc0 þ c1ÞbNp

13ðT;AÞ � b̂ðT;A;jÞðd0 þ d1ÞA13

_A23 ¼ l̂½ðc0 þ c2ÞbNp

23ðT;AÞ � b̂ðT;A;jÞðd0 þ d2ÞA23

_u ¼ l̂½X̂p

12 � cot hðX̂p
13 cos uþ X̂p

23 sin uÞ
 � fW 12 þ cot hðfW 13 cos uþ fW 23 sin uÞ
_h ¼ l̂ðX̂p

23 cos u� X̂p
13 sin uÞ þ fW 13 sin u� fW 23 cos u

_w ¼ l̂ 1
sin h

ðX̂p
13 cos uþ X̂p

23 sinuÞ � 1
sin h

ðfW 13 cos uþ fW 23 sinuÞ

_j ¼ l̂b̂

ð51Þ
associated with the yield surface (24), together with (15), namely l̂ ¼ 1
hc
< b > HðF̂Þ and the initial conditions (50).

Here the components eDik are expressed in terms of the components of D ¼ fLgs in the basis fji � jkg and of the compo-
nents Rik ¼ Rikðw; h;uÞ of the rotation tensor, and they can be found in (B1).

The expression of the components bNp
ij ¼mi 	 N̂pmj; l̂ij ¼mi 	 l̂mj; X̂

p
ij ¼mi 	 X̂mj; i; j ¼ 1;2;3; are given in (A5), (B2), (C1),

(C2) and (C3), respectively. All these functions depend on Sij ¼ Tij � Aij; but also on Aij since the Armstrong–Frederick hard-
ening law was considered.

The expression of the plastic factor, b, is obtained using bNp
ij and eDij as follows from (A6). Note that function hc is expressed

using bNp
ij, l̂ij and b̂ in the formula (A7).

Remark. If sin h ¼ 0 on a certain time interval, then from (45) the equality m3 	 ðW� l̂X̂pÞm1 ¼ 0; m3 	 ðW� l̂X̂pÞm2 ¼ 0
necessarily hold. w could be considered zero and from (42) all the components R13 ¼ R31 ¼ R23 ¼ R32 are vanishing.

6. Rate type models for in-plane rotation and in-plane stress

The particular case of an in-plane rotation of the orthotropy axes and the plane stress state can be derived from the The-
orem 4. as it is discussed in the following theorem.

6.1. In-plane rotation of the orthotropy direction

Theorem 6. Let us consider a deformation process F ¼ FðtÞ; t 2 ½t0; tf 
; with a continuous rate of strain on the time interval
I ¼ ½t0; tf 
; under the supposition that the shear components D13ðtÞ; D23ðtÞ; W13ðtÞ and W23ðtÞ are vanish during the deformation
process.

If the initial conditions are given by
hðt0Þ ¼ 0; wðt0Þ ¼ 0; uðt0Þ ¼ u0; Aijðt0Þ ¼ 0; i; j ¼ 1;2;3; jðt0Þ ¼ 0;

Tðt0Þ ¼ T0 such that T13ðt0Þ ¼ T23ðt0Þ ¼ 0; F̂ ðT0;0;0;n1 � n1;n2 � n2Þ < 0:
ð52Þ
then the shear components T13; T23;A13;A23 and the Euler angles h and w remain zero during the elasto-plastic process, for
every one of the plastic spins considered here, and
_T11 ¼ �l̂ ½a11
bNp

11ðT;AÞ þ a12
bNp

22ðT;AÞ þ a13
bNp

33ðT;AÞ
 þ a11
eD11ðuÞ þ a12

eD22ðuÞ þ a13
eD33ðuÞ

_T22 ¼ �l̂ ½a12
bNp

11ðT;AÞ þ a22
bNp

22ðT;AÞ þ a23
bNp

33ðT;AÞ
 þ a12
eD11ðuÞ þ a22

eD22ðuÞ þ a23
eD33ðuÞ

_T33 ¼ �l̂ ½a13
bNp

11ðT;AÞ þ a23
bNp

22ðT;AÞ þ a33
bNp

33ðT;AÞ
 þ a13
eD11ðuÞ þ a23

eD22ðuÞ þ a33
eD33ðuÞ
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Please
plastic
_T12 ¼ �l̂ a44
bNp

12ðT;AÞ þ a44
eD12ðuÞ

_A11 ¼ l̂ ½ðc0 þ 2c1ÞbNp
11ðT;AÞ � b̂ðT;A;jÞðd0 þ 2d1ÞA11


_A22 ¼ l̂ ½ðc0 þ 2c2ÞbNp
22ðT;AÞ � b̂ðT;A;jÞðd0 þ 2d2ÞA22


_A33 ¼ l̂ ½c0
bNp

33ðT;AÞ � b̂ðT;A;jÞd0A33

_A12 ¼ l̂ ½ðc0 þ c1 þ c2ÞbNp

12ðT;AÞ � b̂ðT;AÞðd0 þ d1 þ d2ÞA12

_u ¼ l̂ X̂p

12ðT;AÞ � fW 12

_j ¼ l̂b̂ðT; a;jÞ

ð53Þ
with the plastic factor given by l̂ ¼ <b>
hc
HðFÞ:

The proof of the statement can be found in Appendix (B).

Proposition 4. In the case of in plane rotation of the orthotropic axes, the yield function is reduced to the following expression
F̂ ¼ ðf̂ 2Þ3=2 � cf̂ 3 � F;
f̂ 2 ¼ K11S2
11 þ K22S2

22 þ K33S2
33 þ Km1S2

12 þ ðK33 � K11 � K22ÞS11S22 þ ðK22 � K11 � K33ÞS11S33 þ ðK11 � K22 � K33ÞS22S33

f̂ 3 ¼ k1S3
11 þ k2S3

22 þ k3S3
33 þ k4S2

11S22 þ k5S2
11S33 þ k6S2

22S11 þ k7S2
22S33

þ k8S2
33S11 þ k9S2

33S22 þ k10S2
12S11 þ k11S2

12S22 þ k12S2
12S33 þ k19S11S22S33:

ð54Þ
Remark. In our representation of the yield function only ten independent yield constants, denoted by Bk; appear in the
expression of f3; in contrast to expressions presented by Cazacu and Barlat (2004) where eleven independent coefficients
appear.

In conclusion:

� The in-plane elastic rotation tensor is characterized by non-zero components
R11 ¼ R22 ¼ cos u; R12 ¼ � sin u; R21 ¼ sinu; R33 ¼ 1; ð55Þ
� Functions ðbNpÞij; with bNp
13 ¼ bNp

23 ¼ 0; are given in (A5), while functions b and hc depend on Tij; Aij; eDij and u as can be seen
from (A6) and (A7) with the following vanishing components eD13 ¼ eD23 ¼ 0:
� There is a single non-vanishing component of all plastic spins considered herein, namely X̂p

12; whose expression is given
by
X̂p
12 ¼ A1S12 þ A2ðS11 þ S22ÞS12 generated by S;

X̂p
12 ¼ �g1

bNp
12 þ �g2ðbNp

11 þ bNp
22ÞbNp

12 generated by Np;

X̂p
12 ¼ ĝ1ðS11

bNp
12 þ S12

bNp
22Þ þ ĝ2ðS12

bNp
11 þ S22

bNp
12Þ generated by S and Np:

ð56Þ
� We add the expression for the constitutive function b̂; derived from (41) or (43).

6.2. In-plane stress state

The stress state is plane during the deformation process with respect to the axes j1; j2; j3; if and only if
j1 	 Tj3 ¼ j2 	 Tj3 ¼ j3 	 Tj3 ¼ 0: ð57Þ
Let us suppose a deformation process characterized by the zero shear components D13 ¼ D23 ¼ 0; and in-plane rotation of the
orthotropy directions. The orthotropic axis, m3 ¼ j3; remains fixed during the process, and j3 	 Tj3 ¼m3 	 Tm3 ¼ 0:

We investigate the necessary condition to have the plane stress associated with a rotation in the plane of the
orthotropy directions. In order to understand what is in-plane stress state means, we assert the following important
remark:

Remark. To have T33 ¼ 0 during the process, the component of the stretching along the direction perpendicular to the
plane, eD33; should be derived from (53) by the following equation
eD33 ¼
l̂

a33
ða13N̂p

11 þ a23N̂p
22 þ a33N̂p

33Þ �
a13

a33

eD11 �
a23

a33

eD22; ð58Þ
in which the plastic factor on the yield surface is given by l̂ ¼ <b>
hc
; where b is depending on eD33; as it can be seen from the

formula (15).
We conclude that eD33 can not be arbitrarily given in the considered deformation process, and it results to be dependent oneD11; eD22; eD12: Consequently, in plane stress state, the component eD33 is not necessarily vanishing, despite the case considered
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for instance in Han et al. (2002). As a direct consequence of the previously given remark and using the same arguments as in
Cleja-T�igoiu (2007) we give the following theorem, which characterizes the plane stress state.

Theorem 7. Let us consider a deformation process with D13 ¼ D23 ¼W13 ¼W23 ¼ 0 and the orthotropy direction n3 is
perpendicular to the plane ðj1; j2Þ:
1. The differential system which describes, in the plane stress process, the material response is described by
Please
plastic
_T11 ¼ �l̂pl½~a11 N̂p
11ðT;AÞ þ ~a12N̂p

22ðT;AÞ
 þ ~a11
eD11ðuÞ þ ~a12

eD22ðuÞ
_T22 ¼ �l̂pl½~a12 N̂p

11ðT;AÞ þ ~a22 N̂p
22ðT;AÞ
 þ ~a12

eD11ðuÞ þ ~a22
eD22ðuÞ

_T12 ¼ �l̂pla44
bNp

12ðT;AÞ þ a44
eD12ðuÞ

_A11 ¼ l̂pl½ðc0 þ 2c1ÞbNp
11ðT;AÞ � b̂ðT;A;jÞðd0 þ 2d1ÞA11


_A22 ¼ l̂pl½ðc0 þ 2c2ÞbNp
22ðT;AÞ � b̂ðT;A;jÞðd0 þ 2d2ÞA22


_A12 ¼ l̂pl½ðc0 þ c1 þ c2ÞbNp
12ðT;AÞ � b̂ðT;A;jÞðd0 þ d1 þ d2ÞA12


_j ¼ l̂plb̂ðT;A;jÞ
_u ¼ l̂plX̂

p
12ðT;AÞ � fW 12ðuÞ

ð59Þ
with the hardening constant c0 ¼ 0 and with the initial conditions written in (52) at which we add T33 ¼ 0:
2. The expression of the modified plastic factor, denoted by l̂pl; is derived under the form
l̂pl ¼
bpl

hc;pl
;

bpl ¼ ½~a11 N̂p
11 þ ~a12 N̂p

22
eD11 þ ½~a12 N̂p
11 þ ~a22 N̂p

22
eD22 þ 2a44N̂p
12
eD12;

ð60Þ
if the modified hardening parameter ĥc;pl is positive, where the expression for the hardening parameter is written in the fol-
lowing form
hc;pl ¼ bNp
11ð~a11

bNp
11 þ ~a12

bNp
22Þ þ bNp

22ð~a12
bNp

11 þ ~a22
bNp

22Þ þ 2a44ðbNp
12Þ

2 þ bNp
11 l̂11 þ bNp

22 l̂22 þ 2bNp
12 l̂12 þ ð@jFðjÞÞ b̂: ð61Þ
3. Here the set of reduced elastic coefficients are defined by the combination of the elastic moduli which is realized during
the deformation process in-plane stress state
~a11 ¼ a11 �
a2

13

a33
; ~a12 ¼ a12 �

a13a23

a33
; ~a22 ¼ a22 �

a2
23

a33
: ð62Þ
4. The axial stretching is given by
eD33ðuÞ ¼
l̂pl

a33
ða13N̂p

11ðT; aÞ þ a23N̂p
22ðT;aÞ þ a33N̂p

33ðT;aÞÞ �
a13

a33

eD11ðuÞ �
a23

a33

eD22ðuÞ: ð63Þ
Proof. By eliminating the component eD33 from (58) together with the consistency condition written in terms of l̂; namely if
l̂ > 0 then _̂F � b� l̂hc ¼ 0; we obtain the following expression
l̂ hc �
1

a33
ða13N̂p

11 þ a23N̂p
22 þ a33N̂p

33Þ
2

� �
¼ ½~a11 N̂p

11 þ ~a12 N̂p
22
eD11 þ ½~a12 N̂p

11 þ ~a22N̂p
22
eD22 þ 2a44N̂p

12
eD12: ð64Þ
Just the expression in the large bracket defines the modified hardening parameter ĥc;pl; those expression is written in
(61). h

The component A33 is not vanishing as a direct consequence of the fact that N̂p
33 is not vanishing in this case. The evolution

in time of this component is given by an appropriate differential equation derived from (53), namely
_A33 ¼ l̂pl½c0

bNp
33ðT; aÞ � b̂ðT;A;jÞd0A33
: A33 is vanishing along the solution of the differential equation if and only if the con-

stant that appears in the evolution equation for the tensorial hardening parameter vanishes, i.e., c0 ¼ 0:

Comments. In the model proposed herein, the component of the back-stress, A33, has an evolution related to the evolu-
tion of the plastic strain in the normal direction, in contrast to the model adopted by Cleja-T�igoiu (2007) that leads to
A33 ¼ 0: In order to avoid A33 – 0; we introduce the limitation of the model to the case of Armstrong–Frederick hardening
law with c0 ¼ 0: This limitation is not necessary if no supposition concerning the stress state has been made. Hahm and
Kim (2008) noticed that for sheet materials in a plane stress state, the back stress measurement in the thickness direction,
in our notation A33, remains unknown. We adopted a similar point of view to have A33 ¼ 0 as was made by Truoung Qui and
Lippmann (2001) and Hahm and Kim (2008) when the material is subject to a plane stress.
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Proposition 5. In the case of a plane stress state, the yield function (50) is reduced to the following expression
F̂ ¼ ðf̂ 2Þ3=2 � cf̂ 3 � F; for c ¼ 1; and where
Please
plastic
f̂ 2 ¼ K11S2
11 þ K22S2

22 þ K33S2
33 þ Km1S2

12 þ ðK33 � K11 � K22ÞS11S22;

f̂ 3 ¼ k1S3
11 þ k2S3

22 þ k4S2
11S22 þ k6S2

22S11 þ k10S2
12S11 þ k11S2

12S22;
ð65Þ
with the six coefficients ki, i 2 f1;2;4;6;10;11g given in (A2), (A3), and the function F ¼ FðjÞ describes the isotropic
hardening.

7. Numerical simulations

First we determine the initial yield surface, and the material constants involved in our model, which are consistent with
experimental data, and second the model will be applied to simulate the material behaviour in certain test experiments.

7.1. Initial yield surface for orthotropic material: set of material parameters compatible with experimental data

We refer to the initial yield surface, which is described by function F̂ , together with functions f̂ 2 and f̂ 3 given by (28), (31)
and (33), respectively, when P ¼ I;Re ¼ I; c ¼ 1; namely
F̂ ðT;A ¼ 0;j ¼ 0;n1 � n1;n2 � n2Þ :¼ ðf̂ 2Þ3=2 � cf̂ 3 � r3
Y ¼ 0:
In order to define the material yield constants, consistent experimental data, from the plane stress state experiment, which
can be found in Verma et al. (2011), will be employed. The relationships between the yield constants denoted by
n ¼ ðK11;K22;K33;Km1; fBkg1 6 k 6 10Þ � ðniÞ1 6 i 6 14 ð66Þ
and the experimental data, are obtained for the uniaxial stress state which is applied along a direction, say m; and for the
equi-biaxial stress, respectively,
T ¼ Tja :¼ ~ram � m; T ¼ Tjb ¼ ~rbðn1 � n1 þ n2 � n2Þ; ð67Þ
where m ¼ cosan1 þ sin an2 is in the plane ðn1;n2Þ; and a 2 ½0;p=2
:
The coefficient of plastic orthotropy is associated with direction m
ra :¼
Dp

aþ90ja
Dp

33ja
¼ �

Dp
aþ90ja

Dp
11ja þ Dp

22ja
; ð68Þ
here Dp
aþ90ja ¼ m? 	 Dp m?; Dp

33ja ¼ n3 	 Dpn3; where m? denotes the direction in the plane perpendicular to m: The rates of plas-
tic strains involved in (68) have to be associated with stress states that reached the initial yield surface.

We give the expressions for the plastic orthotropic parameters previously introduced, in terms of the material con-
stants which enter the yield surface, by eliminating the components of the stresses. We take into account that the considered
stress state lies on the initial yield surface. Note that the material constants Km2;Km3 do not enter the expressions calculated
for the plastic orthotropic parameters as the stress components T33; T13; T23 are zero in stress plane experiments.

Let us introduce
rðn;aÞ ¼ ra; rcðn;aÞ ¼ rc
a; rbðnÞ ¼ rb; rc

bðnÞ ¼ rc
b; rðn;aÞ ¼ ra; ð69Þ
for the normalized yield stresses in tension ra ¼ ~ra
rY
; rb ¼ ~rb

rY
; and in compression rc

a; rc
b; respectively.

The dimensionless uniaxial yield stress are calculated for the stress state (66) using the formula
rðn;aÞ ¼ fðf2jaÞ
3=2 � c ðf3jaÞg

�1=3
; rcðn;aÞ ¼ fðf2jaÞ

3=2 þ c ðf3jaÞg
�1=3 ð70Þ
where
f2ja ¼ K11 cos4 aþ K22 sin4 aþ ðK33 � K11 � K22 þ Km1Þ cos2 a sin2 a; f3ja
¼ k1ðnÞ cos6 aþ k2ðnÞ sin6 aþ ðk4ðnÞ þ k10ðnÞÞ cos4 a sin2 aþ ðk6ðnÞ þ k11ðnÞÞ sin4 a cos2 a: ð71Þ
The dimensionless equi-biaxial yield stress are calculated as follows:
rbðnÞ ¼
1

½ðK33Þ3=2 � cðk1 þ k2 þ k4 þ k6ÞðnÞ
1=3 ; K33 ¼ n3

rc
bðnÞ ¼

1

½ðK33Þ3=2 þ cðk1 þ k2 þ k4 þ k6ÞðnÞ
1=3 :

ð72Þ
The coefficients of anisotropy (68) are calculated in terms of the appropriate components of the plastic stretching, but for the
stress state (67)
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Please
plastic
rðn;aÞ ¼ � E1

E2
ð73Þ
with E1 and E2 calculated in terms of a and n; and explicitly given in Appendix (D1).
Further we investigate the following problem: find the set of constants n such that the experimental values of the param-

eters which characterize the orthotropy are satisfied.
We write the conditions which describe the restrictions (32) on the physical parameters
C ¼ fn 2 R14jn1 þ n2 � n3 > 0; n1 þ n3 � n2 > 0; n2 þ n3 � n1 > 0; n4 > 0g; ð74Þ
and we define the admissible set
D ¼ fn 2 R14j 8 a 2 aI 9 rðn;aÞ;rcðn;aÞ;rbðnÞ;rc
bðnÞ; rðn;a ¼ 0Þ; a 2 aIg: ð75Þ
with aI ¼ f0�;15�;30�;45�;60�;75�;90�g:

Remark. The set C is non-empty and convex and D is an open set.
For any n 2 C \ D the set FthðnÞ is defined by
FthðnÞ ¼ ðrðn;aÞ;rcðn;aÞ;rbðnÞ;rc
bðnÞ; rðn;a ¼ 0Þ; a 2 aIÞ 2 R17: ð76Þ
The set of experimental data given in Verma et al. (2011) for an ultra low-carbon interstitial free high strength steel, were
gathered together in the Table 1.

The normalized values for yield limits are written in Table 1. The experimental data given in Verma et al. (2011) contain
three coefficients of plastic orthotropy, which are determined for the engineering strains between 0.05 and 0.15. We used
only rexp

a¼0; which is measured for the initial yield surface. We introduce the set of experimental data, Fexp; which contain
the data from the Table 1, at which we added another ten values from the experimental graphics given in the mentioned
paper, namely

rf
a¼15; r

f
a¼30; r

f
a¼60; r

f
a¼75 in traction, and

rc;f
a¼15; r

c;f
a¼30; r

c;f
a¼45; r

c;f
a¼60; r

c;f
a¼75 in compression and rc;f

b ¼ rexp
b :

The following problem arises: find n 2 C \ D such that FthðnÞ ¼ Fexp: This algebraic system is over determined and conse-
quently a minimization procedure has been applied to find the numerical values of the yield material parameters.

Following the idea of Nixon et al. (2010) and Banabic et al. (2003), in order to find the material constants compatible with
the experimental data in the sense formalized in (75), we introduce the function �f : R14 ! R defined to be equivalent to the
Euclidean distance between FthðnÞ and Fexp in R17
�f ðnÞ ¼
X17

i¼1

wiðFthðnÞi � Fexp
i Þ

2 ð77Þ
with wi > 0 8 i 2 f1; . . . 17g: In order to obtain better results for ra;a 2 f0�;45�;90�g; rc
a;a 2 f0�;90�g; rb; ra¼0, than for the

other, we use w1 ¼ w4 ¼ w7 ¼ w8 ¼ w14 ¼ w15 ¼ 1000; w17 ¼ 10 and w2 ¼ w3 ¼ w5 ¼ w6 ¼ w9 ¼ w10 ¼ w11 ¼
w12 ¼ w13 ¼ w16 ¼ 1:

The following set of the yield dimensionless constants is obtained:
K11 ¼ 1:0050; K22 ¼ 0:9793; K33 ¼ 0:9350; Km1 ¼ 3:0760;
B1 ¼ �0:8802; B2 ¼ 0:5506; B3 ¼ 7:6231; B4 ¼ 0:1304; B5 ¼ �6:9450;
B6 ¼ �1:5898; B7 ¼ 1; B8 ¼ B9 ¼ B10 ¼ 0:

ð78Þ
Remarks.

1. We mention that the indirect experimental data analyzed herein are emphasized in connection with certain anisotropy
parameters and not with the effective measurements of the stress state along certain paths as was done, for instance, in
the papers by Phillips and Kasper (1973) and Phillips and Liu (1972).

2. In the case when c ¼ 0; i.e., for a quadratical yield surface, the same procedure is applied and it is obtained higher value
jjFth � Fexpjj for the Euclidean norm. Consequently, by increasing the number of numerical parameters to be defined, the
efficiency of the proposed method is increased. Hence the case when c ¼ 1 allows us to build a better approximation for
the experimental data.
ental data given in Verma et al. (2011).

otropic parameters rexp
a¼0 rexp

a¼45 rexp
a¼90 rc;exp

a¼0 rc;exp
a¼90 rexp

b rexp
a¼0

values 1 193/196 192/196 195/196 205/196 195/196 1.59
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Fig. 2. (a) Uniaxial yield stress ra and experimental data. (b) Anisotropy coefficient ra and (c) yield stress curves ðT11; T22Þ plotted for various values of the
uniaxial strain e11.
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3. A good approximation of the experimental data can be ensured for ra as it can be seen from Fig. 2a, in contrast with the
graphs for the orthotropy coefficients raðn;uÞ; which are plotted in Fig. 2b. This is a direct consequence of the fact that the
initial yield function has been calibrated using the set of yield stresses. We pointed out that the orthotropy coefficients
raðn;uÞ have been determined by Verma et al. (2011) for the engineering strains between 0:05 and 0:15; while in the the-
oretical formulae we introduced the hypothesis P ¼ I; i.e., ep ¼ 0: In Fig. 2c the yield stress curves ðT11; T22Þ derived from
the yield surface are plotted for various values of deformation and they are compared with the experimental yield points.
The tension–compression asymmetry is an important subject for metal modelling (see Nixon et al. (2010), Kuroda (2003))
and the model proposed here can describe this phenomenon.

7.2. Determination of the hardening parameters

Note that just the material constants c1; c2 and d1; d2 characterize the influence of the orthotropy on the hardening. The
hardening parameters which enter the differential system (59) with c0 ¼ 0 are determined to be compatible with experi-
mental data given in Verma et al. (2011). To have similar conditions with the performed experiments, which means that
the change in the orthotropy directions is not occurred in the process, we consider no plastic spins and at the initial moment
t0; Aijðt0Þ ¼ 0;jðt0Þ ¼ 0: Consequently the time derivative at time t0, for the normal components of the stress and back-stress
can be derived from the differential system. Only the kinematic hardening parameters c1; d1 enter the appropriate expres-
sions for normal components. We mention that only when the the scalar internal variable is considered to characterizes
the plastic work, and the associated scalar hardening function F ¼ FðjÞ is considered to be of Voce type, see (43), our model
is able to describe with accuracy the tension–compression tests. Since _jðt0Þ – 0; we can consider j to be locally a new
Please cite this article in press as: Cleja-T�igoiu, S., Iancu, L. Orientational anisotropy and strength-differential effect in orthotropic elasto-
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independent variable, and by dividing the equations by _j no presence of lðt0Þ is involved now. The new form of the initial
variation of the normal components have been derived from the simulated uniaxial test. It follows that c1 ¼ T11

2rY

dA11
dj cal cal.

The dimensionless variable xc is taken from Verma et al. (2011) and yc from the condition to have Fðj0Þ ¼ r3
Y ; which

means xc þ yc ¼ 1; namely xc ¼ 394:66=196; yc ¼ �1:0136:
For the determination of the kinematic hardening variable d1 we used again the differential system (59) written for the

uniaxial monotonic tension and the Fig. 8 from Verma et al. (2011). In order to find the pairs of values (T11 ¼ 300 MPa,
e11 ¼ 0:004) and (T11 ¼ 380 MPa, e11 ¼ 0:1) the following numerical values have to be considered d1 ¼ 15; zc ¼ 22:

The kinematic hardening variables d0; c2; d2 remain to be determined. Let us remark the component A22 could influence the
behaviour of the material. At a first step we consider d0; c2; d2 are vanishing parameters, further on in the case of a plane
stress state we simulate the experiments used by Kim and Yin (1997), using the plastic spin III. The presence of the non van-
ishing kinematic constants, say c2 ¼ 120; d2 ¼ 250; leads to a better approximation of the experimental data than the pre-
viously considered c2 ¼ d2 ¼ 0; as it can be seen in Fig. 4a.
7.3. Numerical simulations for the homogeneous deformation of a sheet

We consider a sheet made up from an orthotropic elasto-plastic material with the edges parallel to the fixed axes
jk; k ¼ 1;2;3; and having the initial orthotropic axes, nk; k ¼ 1;2;3; generally with an orientation different from the fixed
axes, see Fig. 1. The plate is subjected to one of the following homogeneous deformations processes:

(1) The axial deformations
Please
plastic
F ¼ k1ðtÞj1 � j1 þ k2ðtÞj2 � j2 þ k3ðtÞj3 � j3; ð79Þ
with the strains k1; k2; k3 : ½t0; tf Þ ! R such that kjðt0Þ ¼ 1: Thus
L ¼
Xi¼3

i¼1

_ki

ki
ji � ji; D ¼ L; W ¼ 0: ð80Þ
No motion spin is associated with this homogeneous deformation process and consequently no rotation of the material ele-
ment is produced, while the otroptropy axes are changing if the non-vanishing spin is involved in the model.

(2) The shear deformation in plane j1; j2 with normal strain
F ¼
X2

i¼1

ji � ji þ CðtÞj1 � j2 þ k3ðtÞj3 � j3; ð81Þ
with C; k3 : ½t0; tf Þ ! R such that Cðt0Þ ¼ 0 and k3ðt0Þ ¼ 1: The symmetric part of the velocity gradient and the total spin
which is nonzero are given by
D ¼ 1
2

_Cðj1 � j2 þ j2 � j1Þ þ
_k3

k3
j3 � j3; W ¼ 1

2
_Cðj1 � j2 � j2 � j1Þ: ð82Þ

(3) The plane stress state has also been considered.

For the cases considered, the corresponding differential systems are numerically integrated using a Matlab code following
Hanselman and Littlefield (1997) and Moler (2011).

The graphs for the components of the tensorial fields have been plotted with respect to the geometrical fixed axes ji � jk:.
In order to be as close as possible to the experiments of Kim and Yin (1997), we use the elastic constants of a low carbon

steel with a cubic symmetry.
The elastic constants have been divided by rY ¼ 196 MPa:
a11 ¼ 1404:049; a12 ¼ 5734:85; a44 ¼ 4183:67; a22 ¼ a33 ¼ a11; a13 ¼ a23 ¼ a12; a55 ¼ a66 ¼ a44; and they correspond to the

Poisson’s ratio m ¼ 0:29, shear modulus l ¼ 82 GPa and Young’s modulus E ¼ 210 GPa using (A3), see also http://
www.makeitfrom.com.

The yield constants: are given in (79) for plane rotation of the orthotropy axes, and for the general rotation
Km2 ¼ Km3 ¼ 2Km1 have to be added.

The hardening constants:
– for kinematic hardening: c0 ¼ 10; c1 ¼ 2:65; c2 ¼ 120; d0 ¼ 5; d1 ¼ 15; d2 ¼ 250;

– for scalar hardening: xc ¼ 2:0136; yc ¼ �1:0136; zc ¼ 22; (Voce-type).
The plastic spin constants:
– for the plastic spin generated by both S and N̂p: ~g ¼ 5102; ~g1 ¼ 2118; ~g2 ¼ 900; ~g3 ¼ �500:.
All the material parameters used in application can be found in the Tables 2 and 3.
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Table 2
Non-dimensionalized material parameters: elastic constants (see Eq. (A4)), yield constants (see Eqs. (65)), hardening constants (see Eqs. (38) and (43)).

Elastic constants (divided by rY ) Yield constants Kij Yield constants Bk Kinematic hardening ðc0; c1; c2 divided by rY Þ Scalar hardening

a11 ¼ 1404:049 K11 ¼ 1:0050 B1 ¼ �0:8802 c0 ¼ 10 xc ¼ 2:0136
a12 ¼ 5734:85 K22 ¼ 0:9793 B2 ¼ 0:5506 c1 ¼ 2:65 yc ¼ �1:0136
a44 ¼ 4183:67 K33 ¼ 0:9350 B3 ¼ 7:6231 c2 ¼ 120 zc ¼ 22
a22 ¼ a33 ¼ a11 Km1 ¼ 3:0760 B4 ¼ 0:1304 d0 ¼ 5
a13 ¼ a23 ¼ a12 Km2 ¼ 6:1520 B5 ¼ �6:9450 d1 ¼ 15
a55 ¼ a66 ¼ a44 Km3 ¼ 6:1520 B6 ¼ �1:5898 d2 ¼ 250

B7 ¼ 1
B8 = B9 = B10 = 0

Table 3
Material parameters corresponding to the plastic spins (see Eqs. (56)).

Plastic spin I (A2 divided by rY ) Plastic spin II (g2 multiplied by r2
Y ) Plastic spin III (multiplied by rY )

A1 ¼ 0 g1 ¼ 0 ĝ1 ¼ 6502

A2 ¼ �180 g2 ¼ �10 ĝ2 ¼ 7220
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Evolution of the yield surface. In the numerical simulations, the deformation process (79) is considered with a non-decreas-
ing k1 applied along the axis j1, namely _k1 P 0 during the process, then a new time variable x ¼ lnðk1Þ could be introduced

by a change of variables dx
dt ¼

_k1ðtÞ
k1ðtÞ

:

The differential system describing the evolution in time of T, A and the scalar hardening variable, j, is given with the un-
known functions expressed in terms of x ¼ lnðk1Þ; and e11 ¼ 1

2 ðk
2
1 � 1Þ: We choose four different values

e11 2 f0;0:02;0:04;0:14g reached during the process. By integrating the differential system up to a fixed e11; the appropriate
values of the tensorial and scalar hardening variables could be numerically calculated for the considered strain. When the
appropriate hardening variables are replaced in the yield expression F̂ ¼ 0 with the yield function (65) written for the plane
stress state, the projections of this current yield surface on the ðT11; T22Þ�plane, i.e., for T12 ¼ T13 ¼ T23 ¼ T33 ¼ 0, could be
derived and these have been plotted in Fig. 2c. A strong differential effect can be noticed from the intersections of the curves
ðT11; T22Þ with the coordinate axes. This phenomenon is caused by the evolution of the kinematic hardening variable.

Let us remark that only under the hypothesis that the anisotropy axes remain fixed during the deformation process such a
representation is correct since the axes are directly involved in the expression of the yield surface.

The uniaxial stress state case is considered for the deformation process (79) in order to simulate both of processes Tension–
Compression–Tension (TCT) and Compression–Tension–Compression (CTC). The initial orthotropy axes are parallel with the
edge of the sheet and they remain fixed, since no plastic spin is involved in this process. The strain–stress curves are plotted
in Fig. 3, for the following pre-strain epre 2 f0:02;0:04;0:06;0:08;0:1g: The curves for first cycle are similar with those plotted
in Verma et al. (2011). In order to obtain the quantitative resemblance of the curves for the subsequent cycles, with those
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Fig. 3. Strain–stress curves obtained with uniaxial stress model for (a) TCT tests for prestrais at 2%;4%;6%;8%;10% and (b) CTC tests for prestains at �4%
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Fig. 4. Variation of Euler’s angle u�u0; after the first prestrain at 3% as a function of the axial second strain, e11, for various plastic spins with the initial
conditions (b) u0 ¼ �30�; (c) u0 ¼ �45� and (d) u0 ¼ �60� : Fig. 4a shows an improvement in the predicted numerical results for c2 ¼ 120;d2 ¼ 250; when
the plastic spin III is considered. The experimentally observed Kim and Yin effect occurs in the plane stress state.
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plotted in Figures 8 and 9 from Verma et al. (2011), the dependence of the pre-strains, epre; of the kinematic hardening
parameter d1 has been introduced. The kinematic hardening parameter d1 is introduced under the form dsoft

1 ¼ d1þ
ð70� d1Þexpð20ð0:1� epreÞÞ; to emphasize the softening attributed to kinematic hardening.

Plane stress state with the initial orthotropic axis n3 ¼ j3; namely for h0 ¼ 0: We simulate numerically the behaviour of a
plate, via the solution of the differential system (59) using Voce-type hardening law, for the deformation process (1), with
non-decreasing k1 applied along the axis j1 only. We refer to the plane stress state in order to simulate the experiments used
by Kim and Yin (1997). In their experiments, the tensile stretch tests were performed in specimens cut at angles of
30�;45�;60�; respectively, to the rolling directions, from a large sheet pre-strain at 3%: The experimental points determined
by Kim and Yin (1997) can be seen in Fig. 4. The monotony of the numerical values of the function u shows a rotation in the
opposite direction for u0 ¼ �30� than that for u0 ¼ �45� and u0 ¼ �60o: As we have already mentioned, for the plane stress
state and for the prestrain e11 ¼ 3% considered in Kim and Yin experiment, the appropriate values of the hardening variables
which characterize this prestrain state are calculated and they will be involved in the initial conditions associated with the
pre strained state.

Let us remark that in the plane stress state, the appropriate combinations between the spin constants characterize the
plastic spins X̂12 as it can be seen from the Appendix C. The monotony of the function u; see (59), is given by the sign of
X̂12: We look for the spin parameters which lead to X̂12ðtÞ > 0 for the initial condition u0 ¼ �30�; and to X̂12ðtÞ < 0 for
the initial condition u0 ¼ �45� and u0 ¼ �60�, respectively.
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Fig. 5. Influence of the plastic spins (a) on the normal components of the stress T11 for u0 ¼ �30�; and on the shear stress component, T12; for the initial
conditions (b) u0 ¼ �30� ; (c) u0 ¼ �45� ; (d) u0 ¼ �60�:
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We simulate numerically the influence of the type of plastic spin shown in Fig. 4, which present the values of u�u0 as a
function of the strain e11, for the initial conditions u0 ¼ �30�; u0 ¼ �45� and u0 ¼ �60�, respectively, and all three plastic
spins considered herein. There are the set of spin constants which approximate very well the experimental data put into evi-
dence for the spins I and II, for the initial data u0 ¼ �45� and u0 ¼ �60�, namely �A1 þ A2 � A3 ¼ 0 and
�A4 þ A5 � A6 ¼ �180 for spin I, �g1 þ g2 � g3 ¼ 0 and �g4 þ g5 � g6 ¼ �10 for the spin II. The experimental behaviour ob-
served by Kim and Yin (1997) can be approximated only when the expression of the plastic spin is that generated by S and
N̂p, i.e., the spin III, since there can not be found the constants for the plastic spins I and II which provide an increasing func-
tion uðtÞ for the initial condition u0 ¼ �30�: To obtain the rotation in the opposite direction for u0 ¼ �30� than that for
u0 ¼ �45� and u0 ¼ �60o is the ultimate test to choose the type of the spin as Dafalias (2000) noticed. There is the rationale
which led to our choice for the plastic spin, namely spin III. We emphasize that the components of the spin III are polyno-
mials of the third order in components of the stress, while the spins I and II are second degree polynomials.

Consequently, in the following, we use the plastic spin III in the numerical simulations of the behaviour of the model pre-
sented in this study. The material spin constants are chosen to be in such a way to have ĝ1 ¼ ~gþ ~g2 � ~g3 ¼ 6502 and
�ĝ2 ¼ ~gþ ~g1 ¼ 7220 in the formula ð56Þ3:

From Figs. 4 and 5, it can be seen that there is an important influence of the plastic spins on the rotation in the plane angle
and on the shear component T12; especially at �30�; in spite of the small amount in its variation. T12 tends to stabilize at zero
value over e11 ¼ 6%:
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Fig. 6. Variation of Euler’s angle as a function of the shear strain C plotted for various plastic spins as well as without plastic spin for (a) u0 ¼ 30�; (b)
u0 ¼ 45�; (c) u0 ¼ 60�:
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Let us remark that in Ulz (2011) the rotation angle of the so called preferred axis is represented versus the uniaxial strain
for different values for the plastic spin parameters, but the experimental results by Kim and Yin (1997) appear to be dis-
persed among the plotted curves, not being localized on these curves that correspond to the appropriate values of plastic
spin parameter. On the other hand, when the elastic stretches are large during the process, the orthotropy axes are distorted,
namely they do not remain orthogonal, when we pass from the isoclinic configuration to the deformed configuration.

Shear deformation of the plate is numerically simulated via the solution of the differential system (59), when the current
value of the homogeneous deformation gradient is given by (81). In this case the motion spin is not vanishing. An important
influence of plastic spin is emphasized for large amount of shear strains. The stabilization of the orientational anisotropy
occurs in the presence of the plastic spin, in contrast with the unreasonable behaviour produced in the absence of the plastic
spin. The function u�u0 is plotted in Fig. 6 in terms of the shear deformation C for different initial values u0; while the non-
zero components of the stress are represented in Fig. 7. T12 is about ten times higher than T11 and T22: The same effect of the
non-coaxial plastic spin, i.e., which corresponds to the plastic spin III in an isotropic model, on the shear stress T12 and on the
normal stress component T11; is emphasized by Kuroda (1996) (for its plastic spin parameter a = 3), see the Figs. 1 and 2, in
the mentioned paper.

For the general position of the orthotropic axes, i.e., when sin h0 – 0; the differential system (51) is considered for the homo-
geneous deformation process (79), with _k1 P 0; k2 ¼ k3 ¼ 1; when the plastic spin III and the Voce-type scalar hardening
law are involved. The influence of the initial value of u0 on the behaviour of the model is analyzed for the initial position
of the orthotropy axes described by w0 ¼ 0�; h0 ¼ 3�: A significant influence on the values of the Euler angles can be observed,
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as well as for the stress component T13 (similar for T23), see Fig. 8. We remark that their values tend to stabilize at the appro-
priate values over e11 ¼ 4%.

Influence of the kinematic hardening on the behaviour of the model could be analyzed based on the numerical solution of
the differential system (51) for the general deformation process, when c0 could be non-zero. We use different values for the
constant c0; say c0 ¼ �100; c0 ¼ 100 and c0 ¼ 150; to observe the influence of the kinematic hardening on the Euler’s angle
h� h0; on the stress T11 and on the back-stress A11; see Fig. 9, for the initial conditions h0 ¼ 3�;w0 ¼ 0�;u0 ¼ 10�:
8. Conclusions

The model proposed in this paper allows us to describe the variation, with respect to time, of the orthotropic axes, i.e., the
so-called orientational anisotropy, starting from the hypothesis that orthotropy is preserved during the deformation process,
a fact experimentally motivated by Kim and Yin (1997). If the elastic strains remain small during the deformation process,
then the orthotropic axes are rotated only, i.e., they remain orthogonal. The rotation of the orthotropy axes is distinguished
from the rotation of the material elements, just the plastic spin makes the difference between the spin of the motion and the
spin which characterizes the orientational anisotropy. The change in the anisotropy axes is characterized by the presence of
the Euler angles, whose variation in time can be achieved in the absence of the spin of the motion if and only if the plastic
spin is involved in the model. When a shear deformation is numerically simulated, the stabilization of the orientational
anisotropy occurs in the presence of the plastic spin, in contrast with the unreasonable behaviour produced in the absence
of the plastic spin. In this case, the motion spin is non-vanishing.
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Fig. 8. The variation of Euler’s angles (a) h—h0; (b) u—u0; (c) w—w0 and stress component (d) T13 in terms of e11 with the third spin and for the initial
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The rationale for which the yield function was considered to depend on the third invariant of the effective stress compo-
nents is motivated by experimental data required to be incorporated in the model, as well as the necessity to have a model
which allows for different values of the modulus of the yield stress in compression and traction, the so-called strength dif-
ferential effect of some metals. We exemplified herein the possibility to describe the three-dimensional behaviour of the
model.

The essence of the philosophy concerning the constitutive models makes one confident of the measurements of the
parameters in these processes which are allowed within the constitutive framework. As the proposed model is not reduced
to in-plane stress or strain processes, parameters such as the elastic constants, yield stresses, parameters of the plastic spin,
and so on, are related to the model and not to the processes.

The flexibility of the proposed model with the third invariant of the stress in the yield function allows us to model
the strength differential effect in the initial yield condition on one hand and determine the yield coefficients which are
compatible with the set of experimental anisotropic parameters traditionally reported in the literature on the other
hand. The material coefficients describing the initial yield functions and hardening variables were determined based
on experimental data in a plane stress process and in the uniaxial cyclic tests reported by Verma et al. (2011). We in-
cluded also tension, compression and reversal test data to emphasize the strength-differential and kinematic hardening
effects.

Once the elastic, yield and hardening material constants have been determined, the analysis of the behaviour of the
solution to the differential system, which describes the evolution in time of the stress, hardening variable and motion of
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the anisotropy axes, makes possible to completely define the model, having a special selection of the plastic spin and
hardening variables. Only when the expression of the plastic spin is that generated by S and N̂p, i.e., the spin III, it is
possible to obtain a rotation in the opposite direction for u0 ¼ �30� unlike the case when considering u0 ¼ �45� and
u0 ¼ �60�: We note that, in the present modelling, the same set of plastic spin constants have been chosen for the three
graphs unlike the papers by Dafalias (2000), Ulz (2011) and Han et al. (2002), where the best curves are fitted for dif-
ferent constants values describing the spins. In the mentioned papers the spin description corresponds to isotropic
expression derived from our formula (37), for spin III, with only one non-zero parameter ~g. Han et al. (2002) used an
additional parameter which enters the expression of ~g � lU; which is dependent on the initial position of the appropri-
ate axis.

The behaviour of this model is strongly influenced by various material parameters, the initial condition, or the process,
e.g., a plane stress state or a plane strain state.

The behaviour of the material under the plane stress and plane strain, as well as in unidimensional cyclic homogeneous
processes, have also been analyzed therein.
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Appendix A
Please
plastic
K11 ¼ C1 þ C2 þ C4 þ C7 þ C8; K22 ¼ C1 þ C3 þ C5 þ C7 þ C9; K33 ¼ C1 þ C7;

Km1 ¼ 2C1 þ C2 þ C3; Km2 ¼ 2C1 þ C2; Km3 ¼ 2C1 þ C3;

K12 ¼ C6 þ 2C7 þ C8 þ C9; K13 ¼ 2C7 þ C8; K23 ¼ 2C7 þ C9:

ðA1Þ
The coefficients ki; i ¼ 1; . . . ;20; are functions of the yield material constants Bj; j ¼ 1; . . . ;10:
k1 ¼
1
9
ð3B1 � 3B2 þ B3 � 2B4 � 3B7 þ 9B8 þ 3B9Þ

k2 ¼
1
9
ð�3B1 þ 3B2 þ 3B4 þ B5 þ B6 þ 3B7 þ 9B8 þ 3B10Þ;

k3 ¼
1
3
ð�B1 � B2 þ 3B8Þ; k4 ¼

1
18
ð�9B1 þ 15B2 � 3B3 þ 15B4 þ B5 þ B6 þ 18B7 � 27B8 � 9B9 þ 3B10Þ

k5 ¼
1

18
ð�9B1 þ 3B2 � 3B3 � 3B4 � B5 � B6 � 27B8 � 9B9 � 3B10Þ

k6 ¼
1

18
ð15B1 � 9B2 þ B3 � 17B4 � 3B5 � 3B6 � 18B7 � 27B8 þ 3B9 � 9B10Þ

k7 ¼
1

18
ð3B1 � 9B2 � B3 � B4 � 3B5 � 3B6 � 27B8 � 3B9 � 9B10Þ

k8 ¼
1

18
ð15B1 þ 3B2 þ B3 þ B4 � B5 � B6 � 27B8 þ 3B9 � 3B10Þ

k9 ¼
1

18
ð3B1 þ 15B2 � B3 � B4 þ B5 þ B6 � 27B8 � 3B9 þ 3B10Þ

k10 ¼
1

18
ð15B1 � 21B2 þ 13B3 � 5B4 þ 13B5 � 5B6 þ 81B8 þ 21B9 þ 3B10Þ

ðA2Þ

k11 ¼
1

18
ð�21B1 þ 15B2 � 5B3 þ 13B4 � 5B5 þ 13B6 þ 81B8 þ 3B9 þ 21B10Þ

k12 ¼
1
9
ð3B1 þ 3B2 � 4B3 � 4B4 � 4B5 � 4B6 � 81B8 � 12B9 � 12B10Þ

k13 ¼
1

18
ð15B1 � 21B2 þ 13B3 � 5B4 þ B5 þ B6 þ 81B8 þ 21B9 þ 3B10Þ

k14 ¼
1
9
ð3B1 þ 21B2 � 4B3 þ 5B4 � B5 � B6 � 81B8 � 12B9 � 3B10Þ

k15 ¼
1

18
ð�21B1 � 21B2 � 5B3 � 5B4 þ B5 þ B6 þ 81B8 þ 3B9 þ 3B10Þ

k16 ¼
1
9
ð21B1 þ 3B2 � B3 � B4 þ 5B5 � 4B6 � 81B8 � 3B9 � 12B10Þ

k17 ¼
1

18
ð�21B1 þ 15B2 þ B3 þ B4 � 5B5 þ 13B6 þ 81B8 þ 3B9 þ 21B10Þ

k18 ¼
1

18
ð�21B1 � 21B2 þ B3 þ B4 � 5B5 � 5B6 þ 81B8 þ 3B9 þ 3B10Þ

k19 ¼
1
9
ð6B1 � 6B2 þ 2B3 þ 2B4 þ 2B5 þ 2B6 þ 54B8 þ 6B9 þ 6B10Þ

k20 ¼
1
3
ð�9B1 � 9B2 þ B3 þ B4 þ B5 þ B6 þ 81B8 þ 9B9 þ 9B10Þ

ðA3Þ
Remark. Only six material constants are needed for the plain stress state case, namely k1; k2; k4; k6; k10; and k11.
The linear orthotropic elastic type constitutive equation written for Ê½D
 in the orthotropic basis is given by
ðÊ½D
Þ11 ¼ a11D11 þ a12D22 þ a13D33; ðÊ½D
Þ12 ¼ a44D12;

ðÊ½D
Þ22 ¼ a12D11 þ a22D22 þ a23D33; ðÊ½D
Þ13 ¼ a66D13;

ðÊ½D
Þ33 ¼ a13D11 þ a23D22 þ a33D33; ðÊ½D
Þ23 ¼ a55D23:

ðA4Þ
For a11 ¼ a22 ¼ a33; a12 ¼ a13 ¼ a23; a44 ¼ a55 ¼ a66, one obtains the special case of materials with cubic symmetry, see Ting
(1996). The relationships between the elastic constants are given by
a11 ¼
Eð1� mÞ

1� m� 2m2 ; a12 ¼
Em

1� m� 2m2 ; a44 ¼ l;
where E is Young’s modulus and m Poisson’s ratio.
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The components of N̂pðTq ;A;m1 �m1;m2 �m2Þ with respect to the basis ðmi �mjÞ are given by
Please
plastic
ðbNpÞ11 ¼
3
2

ffiffiffiffi
f2

p
ð2K11S11 þ ðK33 � K11 � K22ÞS22 þ ðK22 � K11 � K33ÞS33Þ

� cð3k1S2
11 þ 2k4S11S22 þ 2k5S11S33 þ k6S2

22 þ k8S2
33 þ k10S2

12þ
þ k13S2

13 þ k16S2
23 þ k19S22S33Þ

ðbNpÞ22 ¼
3
2

ffiffiffiffi
f2

p
ððK33 � K11 � K22ÞS11 þ 2K22S22 þ ðK11 � K22 � K33ÞS33Þ

� cð3k2S2
22 þ k4S2

11 þ 2k6S11S22 þ 2k7S22S33 þ k9S2
33 þ k11S2

12þ
þ k14S2

13 þ k17S2
23 þ k19S11S33Þ

ðbNpÞ33 ¼
3
2

ffiffiffiffi
f2

p
ððK22 � K11 � K33ÞS11 þ ðK11 � K22 � K33ÞS22 þ 2K33S33Þ

� cð3k3S2
33 þ k5S2

11 þ k7S2
22 þ 2k8S11S33 þ 2k9S22S33þ

þ k12S2
12 þ k15S2

13 þ k18S2
23 þ k19S11S22Þ

ðbNpÞ12 ¼
3
2

ffiffiffiffi
f2

p
Km1S12 � cðk10S11S12 þ k11S22S12 þ k12S33S12 þ

1
2

k20S13S23Þ

ðbNpÞ13 ¼
3
2

ffiffiffiffi
f2

p
Km2S13 � cðk13S11S13 þ k14S22S13 þ k15S33S13 þ

1
2

k20S12S23Þ

ðbNpÞ23 ¼
3
2

ffiffiffiffi
f2

p
Km3S23 � cðk16S11S23 þ k17S22S23 þ k18S33S23 þ

1
2

k20S12S13Þ

ðA5Þ
The expression of the plastic multiplier, b, is obtained using bNp
ij and eDij as follows
b ¼ ða11
bNp

11 þ a12
bNp

22 þ a13
bNp

33ÞeD11 þ ða12
bNp

11 þ a22
bNp

22 þ a23
bNp

33ÞeD22 þ ða13
bNp

11 þ a23
bNp

22 þ a33
bNp

33ÞeD33

þ 2a44
bNp

12
eD12 þ 2a66

bNp
13
eD13 þ 2a55

bNp
23
eD23 ðA6Þ
Note that function hc is expressed using bNp
ij, l̂ij and b̂, namely
hc ¼ bNp
11ða11

bNp
11 þ a12

bNp
22 þ a13

bNp
33 þ l̂11Þ

þ bNp
22ða12

bNp
11 þ a22

bNp
22 þ a23

bNp
33 þ l̂22Þ þ bNp

33ða13
bNp

11 þ a23
bNp

22 þ a33
bNp

33 þ l̂33Þ
þ 2bNp

12ða44
bNp

12 þ l̂12Þ þ 2bNp
13ða66

bNp
13 þ l̂13Þ þ 2bNp

23ða55
bNp

23 þ l̂23Þ þ @jFðjÞb̂

ðA7Þ
Remark. For plane stress case we use in this expressions the restrictions S13 ¼ S23 ¼ S33 ¼ 0 and for uniaxial stress case
S22 ¼ S12 ¼ S13 ¼ S23 ¼ S33 ¼ 0:

Appendix B

The stretching D has the components eDij with respect to the actual orthotropic axes, expressed in terms of the compo-
nents of the rotation tensor R and the components D written in the basis ji � jk, eDij ¼ ðRT DRÞij, given by
eD11 ¼ R2
11D11 þ R2

21D22 þ R2
31D33 þ 2R21R11D12 þ 2R11R31D13 þ 2R31R21D23eD22 ¼ R2

12D11 þ R2
22D22 þ R2

32D33 þ 2R12R22D12 þ 2R12R32D13 þ 2R22R32D23eD33 ¼ R2
13D11 þ R2

23D22 þ R2
33D33 þ 2R13R23D12 þ 2R13R33D13 þ 2R23R33D23eD12 ¼ R11R12D11 þ R21R22D22 þ R31R32D33 þ ðR21R12 þ R11R22ÞD12

þ ðR31R12 þ R11R32ÞD13 þ ðR31R22 þ R21R32ÞD23eD13 ¼ R11R13D11 þ R21R23D22 þ R31R33D33 þ ðR11R23 þ R21R13ÞD12

þ ðR11R33 þ R31R13ÞD13 þ ðR31R23 þ R21R33ÞD23eD23 ¼ R12R13D11 þ R22R23D22 þ R32R33D33 þ ðR12R23 þ R13R22ÞD12

þ ðR12R33 þ R13R32ÞD13 þ ðR22R33 þ R23R32ÞD23

ðB1Þ
Remark. For a plane rotation of the orthotropy axes R13 ¼ R23 ¼ R31 ¼ R32 ¼ 0:
In the case of the evolution equation for the tensorial hardening variable of the Armstrong-Frederick type adapted to the

orthoropic symmetry, the following representation for the components l̂ij :¼mi 	 l̂mj, in terms of bNp
ij and Aij, is obtained
l̂11 ¼ ðc0 þ 2c1ÞbNp
11 � b̂ðd0 þ 2d1ÞA11; l̂22 ¼ ðc0 þ 2c2ÞbNp

22 � b̂ðd0 þ 2d2ÞA22;

l̂33 ¼ c0
bNp

33 � b̂d0A33; l̂12 ¼ ðc0 þ c1 þ c2ÞbNp
12 � b̂ðd0 þ d1 þ d2ÞA12;

l̂13 ¼ ðc0 þ c1ÞbNp
13 � b̂ðd0 þ d1ÞA13; l̂23 ¼ ðc0 þ c2ÞbNp

23 � b̂ðd0 þ d2ÞA23:

ðB2Þ
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Proof of the Theorem 6. We consider the differential system (51). We start from the initial conditions that correspond to
an elastic state, which means that the stress process remain inside the initial elastic domain a certain time interval, say
½t0; t1Þ; i.e., l̂ ¼ 0; a ¼ 0;j ¼ 0;Re ¼ Rðt0Þ: Rðt0Þ is dependent on the initial values of Euler’s angles, hðt0Þ ¼ 0;wðt0Þ ¼ 0 and
uðt0Þ ¼ u0: We denote by t1 the moment of time at which the stress state reaches the initial yield surface. Since the shear
components of the stretching, D13 ¼ D23, vanish, then eD13ðtÞ ¼ 0 and eD23ðtÞ ¼ 0 on the same time interval as a consequence
of the formulae given in (B1). If l̂ðt0Þ > 0; from the differential Eqs. (51), which refer to the shear stress components T13 and
T23; and to A13 ¼ A23; together with h ¼ 0 and with the appropriate components for bNp

ij given in (A5), and with (B1), we obtain
that the unique solution has the vanishing components T13 ¼ T23 ¼ 0; and A13 ¼ A23 ¼ 0: Consequently, S13 ¼ S23 ¼ 0, while
l̂, b and hc can be found from (A6), (A7). Next, we focus on Euler’s angles. First we remark that X̂p

13 ¼ X̂p
23 ¼ 0 as a conse-

quence of expressions for X̂p
ij given in (C1)-(C3). Thus from the differential system (51), together with the initial condition

hðt0Þ ¼ 0, it follows that hðtÞ ¼ 0 satisfies the appropriate differential equation. Consequently, the anisotropy axes could sup-
port only a plane rotation. w is considered to be zero and only one of Euler’s angles, namely u, characterizes the plane
rotation.

Appendix C

Herein we present the non-vanishing components of the plastic spin for all the types of spin considered in the paper.
The plastic spin generated by S, with respect to the basis ðmi �mjÞ, is given by
Please
plastic
X̂p
12 ¼ ð�A1 þ A2 � A3ÞS12 þ ð�A4 þ A5 � A6ÞðS11S12 þ S12S22 þ S13S23Þ

X̂p
13 ¼ �A1S13 � A4ðS11S13 þ S12S23 þ S13S33Þ

X̂p
23 ¼ �A2S23 � A5ðS12S13 þ S22S23 þ S23S33Þ

ðC1Þ
The components of the plastic spin generated by Np, with respect to the axes ðmi �mjÞ, are given by
X̂p
12 ¼ ð�g1 þ g2 � g3ÞbNp

12 þ ð�g4 þ g5 � g6ÞðbNp
11
bNp

12 þ bNp
12
bNp

22 þ bNp
13
bNp

23Þ
X̂p

13 ¼ �g1
bNp

13 � g4ðbNp
11
bNp

13 þ bNp
12
bNp

23 þ bNp
13
bNp

33Þ
X̂p

23 ¼ �g2
bNp

23 � g5ðbNp
12
bNp

13 þ bNp
22
bNp

23 þ bNp
23
bNp

33Þ

ðC2Þ
When considering the plastic spin generated by S and Np, then its components, again with respect to the actual orthotropic
axes ðmi �mjÞ, are given by
X̂p
12 ¼ ð~gþ ~g2 � ~g3ÞðS11

bNp
12 þ S12

bNp
22 þ S13

bNp
23Þ � ð~gþ ~g1ÞðS12

bNp
11 þ S22

bNp
12 þ S23

bNp
13Þ

X̂p
13 ¼ ~gðS11

bNp
13 þ S12

bNp
23 þ S13

bNp
33Þ þ ð�~g� ~g1ÞðS13

bNp
11 þ S23

bNp
12 þ S33

bNp
13Þ

X̂p
23 ¼ ~gðS12

bNp
13 þ S22

bNp
23 þ S23

bNp
33Þ þ ð�~g� ~g2ÞðS13

bNp
12 þ S23

bNp
22 þ S33

bNp
23Þ

ðC3Þ
Appendix D

E1 and E2 which have been introduced in formula (72) are calculated in terms of a and n; and explicitly given by
E1 ¼
3
2

ffiffiffiffiffiffiffiffi
f2ja

q
½K33 � K11 � K22 þ 2ð2K11 þ 2K22 � K33 � Km1Þ cos2 a sin2 a
�

� c½k4ðnÞ cos6 aþ ð3k1ðnÞ þ 2k6ðnÞ � 2k10ðnÞ þ k11ðnÞÞ cos4 a sin2 aþ
þ ð3k2ðnÞ þ 2k4ðnÞ þ k10ðnÞ � 2k11ðnÞÞ cos2 a sin4 aþ k6ðnÞ sin6 a
;

E2 ¼
3
2

ffiffiffiffiffiffiffiffi
f2ja

q
½2K11 cos2 aþ 2K22 sin2 aþ K33 � K11 � K22
 � c½ð3k1ðnÞ þ k4ðnÞÞ cos4 aþ

þ ð3k2ðnÞ þ k6ðnÞÞ sin4 aþ ð2k4ðnÞ þ 2k6ðnÞ þ k10ðnÞ þ k11ðnÞÞ cos2 a sin2 a


ðD1Þ
where f2ja is given by (71).
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