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Abstract One continues the qualitative analysis started in Part I (Făciu and Molinari in Acta Mech) concerning
the thermomechanical characteristics of a steady, structured moving phase boundary in a shape memory alloy
(SMA) by a quantitative investigation. The internal structure of these interphase layers is governed by a
Maxwellian rate-type constitutive equation coupled or not with the Fourier heat conduction law. We consider
as equilibrium stress–strain–temperature response function for the Maxwellian model an explicit piecewise
linear thermoelastic relation for an SMA bar which can exist in the austenite phase A and in two variants of
martensite M±. Its thermal properties are built in agreement with experimental results on NiTi. This equilibrium
relation has the atypical property that not only the derivative of the stress response function with respect to
the strain changes its sign, but also the derivative with respect to the temperature. Considerable temperature
variation is generated by impact-induced phase transformations due to the large amount of latent heat released
(absorbed) inside the transition layer. One gets strong heating (cooling) across a compressive A → M−
(expansive M− → A) propagating interphase layer. A significant lower (larger) temperature than that at the
front and Hugoniot back state is obtained inside an impact-induced M+ → M− (M− → M+) interphase
layer. The experimental finding of this phenomenon of temperature undershoot (overshoot) could be a valuable
indication for the existence of an interphase layer.

1 Introduction

While the discontinuous shock wave theory in condensed matter is extremely useful in many applications
involving impact loading conditions, the use of shock layer theory, characterized by a small interval of rapid
transition induced by viscosity, heat conduction, or other structuring parameter, can have important theoretical
and experimental consequences. For example, steady plastic shock waves have been observed in the 1960s,
but their definitive experimental evidence is due to Barker [2] who, by using a new technique of laser velocity
interferometry, has brought an important contribution to the development of constitutive theory of viscoplastic
materials by the discovery of the “fourth power law.” About this law and the role of viscosity in the structuring
of shock waves in metals, an overview can be found in Molinari and Ravichandran [3] and Grady [4].

Steady-propagating plastic shock waves have been analyzed from plate-impact experiments by measuring
the rear surface velocity history at the free surface of the target specimen using laser interferometry. Propagating
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phase boundaries cannot be directly observed by this method. That is due to their low propagation speed with
respect to the sound speed and to the wave interactions and reflections following the impact which hinders the
generated phase boundary to reach the monitoring surface. The presence of a propagating phase boundary and
its speed can be deduced only in an indirect way from measurements of the elastic waves at the rear end of the
target specimen (see Escobar and Clifton [5] and the theoretical study [6]).

Other experiments in which a flyer plate or projectile strikes a target specimen and induces a propagating
phase boundary have been also carried out. Shock-induced graphite-to-diamond martensitic phase transitions
are described in Erskine and Nellis [7], while in SMAs, they have been investigated for instance by Lagoudas
et al. [8], Niemczura and Ravi-Chandar [9]. These dynamic experiments use different methods to identify
mechanical characteristics of the transformation front, but neglect the large temperature variation generated
after the passage of the wave front which can be an extremely valuable manifestation of a phase transforming
process. That is obviously due to the fact that such measurements require adequate temperature diagnostic
tools to record short-lived transient phenomena.

The incorporation of thermal effects into the continuum modeling of impact-induced solid–solid phase
transitions has been considered, for example, by Abeyaratne and Knowles [10–12] in the framework of a
driving force theory, by Chen and Lagoudas [13,14] and Lagoudas et al. [8] using a theory based on a volume
fraction as internal variable. Solutions with sharp discontinuities have been obtained for the corresponding
impact problems. Another way to model the response of phase transforming materials is to introduce an
internal dissipation by augmenting the thermoelastic law in such a way that the stress depends additionally
on strain-rate (the Kelvin–Voigt approach used in Vainchtein [15,16]) and on spatial strain-gradients (the
“viscosity-capillarity” model used in Slemrod [17], Abeyaratne and Knowles [18], Turteltaub [19], Ngan
and Truskinovsky [20,21]), or the so-called Maxwellian rate-type approach for which the stress depends
additionally on strain-rate and stress-rate used in Făciu and Mihăilescu-Suliciu [22], Făciu and Molinari [6]
and in Part I [1]. These augmented theories replace the sharp discontinuities by transition layers of finite
thickness.

The Maxwellian model, which we consider in the following, includes as a limit case the Kelvin–Voigt model.
It introduces a time of relaxation related to a “viscosity” parameter in the Maxwellian rate-type relation which
characterizes the kinetics of phase transition. Indeed, in quasi-static loading conditions, this rate-type approach
allows to capture automatically the material instability phenomena which lead to the nucleation and growth of
phases in the unstable regions without additional nucleation criterion (see Făciu and Mihăilescu-Suliciu[22]).
Thus, the transition process of a particle from one stable phase to another does not occur instantaneously, but it
requires a finite phase transition time. The rate of growth of the instability is inverse proportional with this time
of relaxation (see Făciu and Molinari [6]). In the case of dynamic loading conditions, the time of relaxation
is a structuring parameter for a moving interphase layer. Another structuring parameter is the heat conduction
which even alone has the capacity to structure shock waves as it was shown in the comprehensive study on
thermoelastic materials by Dunn and Fosdick [23].

In the first part [1], we have developed a detailed treatment of steady, structured shock waves in a general
framework for a thermoelastic SMA bar. The newness of this study consists in the fact that the internal structure
of these traveling waves is governed by a constitutive approach which has not been considered until now, namely
the Maxwellian rate-type constitutive equation coupled or not with the Fourier heat conduction law. Moreover,
we have considered a thermoelastic stress–strain–temperature relation σ = σeq(ε, θ) with the properties that

both derivatives ∂σeq
∂ε

and ∂σeq
∂θ

change their sign in the constitutive domain. The first property is usual for a
phase transforming material, but the second one is atypical for thermoelastic materials, and its outcomes have
not been investigated systematically until now. This second property is based on laboratory experiments and
expresses the fact that in traction tests, the stress plateaus of the hysteresis loop increase, while in compression
tests, the stress plateaus of the hysteresis loop decrease as the temperature grows. In addition, this property
has important consequences on thermal features of the internal structure of the interphase layers which could
be exploited from experimental point of view.

The aim of this paper is to complete this qualitative analysis with a quantitative description. To do this, we
introduce in Sect. 2 an explicit piecewise linear thermoelastic model σ = σeq(ε, θ)with non-monotone stress–
strain relation for a certain range of temperature θ . This model is appropriate to characterize phenomenological
aspects of the thermomechanical response of an SMA bar in tension and compression tests. It corresponds to a
material capable of existing in three distinct solid phases: the austenite A and two variants of martensite M±.
The numerical parameters of the proposed thermoelastic model are chosen in such a way that the evolution
of the non-monotone stress–strain relation with the temperature is quantitatively consistent with the rate of
increase of the hysteresis plateau with temperature obtained by Shaw [24] in traction tests for NiTi strips in the
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range of temperatures between 15 and 55 ◦C. In this approach, the free energy of the thermoelastic model is
not prescribed a priori, but on the contrary is determined once the stress–strain–temperature relation has been
established. The thermodynamic potentials of the thermoelastic model are characterized in Appendix A. We
also introduce in Sect. 2 the mixed hyperbolic-elliptic system of field equations and the jump relations for the
three-phase thermoelastic material. The internal energy allows us to explicitly determine the Hugoniot locus
in the temperature–strain space and in the stress–strain space. In Sect. 3, we use this thermoelastic model as
an equilibrium relation for a Maxwellian rate-type constitutive equation. The thermodynamic potentials of the
Maxwellian model are explicitly determined for this equilibrium relation in Appendix. B. The procedure for
finding traveling wave solutions structured by rate-type effects (“viscosity”) and heat conduction is outlined
in Sect. 4. In Sect. 5, we describe the prediction of our constitutive approach for impact-induced phase
transformations from the austenite phase A to the martensitic variant M− and for the reverse situation. In
this case, ∂σeq

∂θ
has a constant negative sign inside the profile layer. We illustrate how after the passage of the

moving interface separating the two phases of the material the temperature increases in the compressive case
and decreases in the expansive case. The considerable increase or decrease in temperature is due to the large
amount of latent heat released or absorbed during the phase transformation inside the transition layer. We
also consider the case of an impact-induced compressive phase transformation from the martensite variant
M+ to the martensite variant M− when ∂σeq

∂θ
changes its sign inside the interphase layer. This is the most

interesting case through its theoretical and practical consequences. Indeed, in this case, the material is heated
by the passage of the compressive moving phase boundary, i.e., the temperature of the Hugoniot back state
is significantly higher than the temperature of the front state, but there are places inside the transition layer
where the temperature is considerably lower than the front and back state temperature. This phenomenon of
temperature undershoot in a steady structured wave is in agreement with the endothermic character of the
M− → A transformation and the exothermic character of the A → M+ transformation. This behavior cannot
be predicted by a sharp interface theory where only the front state and the admissible Hugoniot back state are
relevant. On the other side, the existence of this spike-layer form of the temperature profile gives the possibility
to an interphase layer to be detected experimentally. Finally, Sect. 6 contains conclusions and discussions.

2 A piecewise linear thermoelastic model for a three-phase SMA

It is now unanimously accepted that the main features of solid–solid phase transitions, like in shape memory
alloys, are predicted by using thermoelastic constitutive laws with non-monotone stress–strain relations for
certain intervals of temperature. We consider here an explicit and simple relation σ = σeq(ε, θ), called equilib-
rium stress–strain–temperature relation, which fulfills the thermomechanical assumptions H1–H3 described
in Part I [1]. It characterizes the response of an SMA bar which can exist in three phases: the (low strain)
austenite phase A and two variants of martensite M± (large strain) obtained in tension or compression tests.

Starting from isothermal stress–strain curves obtained in laboratory experiments at very low strain rates,
we can associate the strain intervals on which the stress–strain relation has positive slope, both in loading and
unloading tests, with the stable phases of the material. Such kind of experiments are illustrated in Shaw [24,
Fig. 3] for the pseudoelastic response of a nearly equiatomic polycrystalline NiTi alloy under uniaxial traction
tests for temperatures between 15 and 55 ◦C.

We consider that there exist two critical temperatures θm and θM with the property that for θ ∈ [θm, θM ]
all three phases are available to the material. This means that, for fixed θ , on the intervals: ε ≤ ε−m (θ), ε ∈[
ε−M (θ), ε

+
M (θ)

]
and ε ≥ ε+m (θ), the function σ = σeq(ε, θ) is a monotonically increasing function of strain

(Fig. 1). The pairs
(
ε = ε±M (θ), σ = σ±

M (θ) = σeq(ε
±
M (θ), θ)

)
are associated with the change of sign

of the slope of the equilibrium stress–strain relation at constant temperature and correspond to the strain–
stress states where the instabilities accompanying the A → M± phase transformation start to manifest in
quasi-static isothermal uniaxial tensile or compressive loading experiments. In fact, they are related to the
beginning of the loading stress plateau of the hysteresis loop, which for a NiTi alloy manifests in the form
of a first stress drop followed by slight stress oscillations (Shaw [24, Fig. 3]). In a similar way, the pairs(
ε = ε±m (θ), σ = σ±

m (θ) = σeq(ε
±
m (θ), θ)

)
are associated with the strain–stress states where the instabilities

accompanying the reverse M± → A phase transformation start to develop along the unloading stress plateau.
For fixed θ > θM , the material only exists in its austenitic form and the stress response function σ =

σeq(ε, θ) is a monotonically increasing function of strain. For fixed θ < θm , the material only exists in its
martensitic variants M±, and σ = σeq(ε, θ) is a monotonically increasing function of strain for ε ≤ ε−m (θ)
and ε ≥ ε+m (θ), while on the remaining strain interval ε ∈ (

ε−m (θ), ε+m (θ)
)
, it is monotonically decreasing.
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Fig. 1 a Schematic description of the phase diagram in the ε − θ plane for the piecewise linear thermoelastic model (1)–(3); b
Evolution of the non-monotone stress–strain relation σ = σeq (ε, θ) with respect to temperature for the input data in Tabel 1

Piecewise linear stress–strain relations have been often successfully employed to characterize analytically
and numerically different aspects concerning phase transformation in solid bars in the isothermal setting
(Abeyaratne and Knowles [18], Truskinovsky [25], Făciu and Molinari [6]) and also in the non-isothermal
setting (see Turteltaub [19], Abeyaratne and Knowles [10,11], Abeyaratne et al. [26], Făciu and Mihăilescu-
Suliciu [22], Vainchtein [16]).

We consider in this paper only temperatures θ ranging in an interval included in [θm, θM ]. The equilibrium
stress response function is given by the continuous and piecewise smooth relation

σ = σeq(ε, θ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

E3(ε − ε−m (θ))+ σ−
m (θ), for ε ≤ ε−m (θ)

−E2(ε − ε−m (θ))+ σ−
m (θ), for ε−m (θ) < ε < ε−M (θ)

E1(ε − ε−M (θ))+ σ−
M (θ), for ε−M (θ) ≤ ε ≤ ε+M (θ)−E2(ε − ε+m (θ))+ σ+
m (θ), for ε+M (θ) < ε < ε+m (θ)

E3(ε − ε+m (θ))+ σ+
m (θ), for ε+m (θ) ≤ ε

(1)

where E1 > 0 and E3 > 0 represent the constant elastic moduli of the austenite phase A and martensite
variants M±, respectively, while −E2 < 0 is the elastic modulus of the unstable (spinodal) regions.

The choice of this simple piecewise linear model is in agreement with the linear thermoelastic behavior
observed experimentally for an SMA in uniaxial tensile and compressive tests when the material is in a pure
phase: austenite A, or in one of the two martensite variants M± (Shaw [24]). While the monotone increasing
parts of the stress–strain relation can be chosen in such a way to fit known quasi-static isothermal experiments,
the monotone decreasing part, which induces instability phenomena and influences the kinetics of phase
transformation, cannot be determined in a direct way from such tests. For simplicity, we choose here a straight
line with constant slope −E2 connecting the local maxima and minima of the equilibrium stress–strain relation.

To get a linear thermoelastic behavior of the material in a single phase, we require that functions ε =
ε±M (θ), ε = ε±m (θ) as well as σ = σ±

M (θ), σ = σ±
m (θ) be linear functions of θ . We derive the following

expressions (see also [22]):

ε±M (θ) = α(θ − θT )± M(θ − θm), ε±m (θ) = α(θ − θT )∓ (M − m)(θ − θM )± M(θ − θm), (2)

σ+
M (θ) = −σ−

M (θ) = E1 M(θ − θm), σ+
m (θ) = −σ−

m (θ) = E1 M(θ − θm)+ E2(M − m)(θ − θM ), (3)

satisfying conditions ε−M (θm) = ε+M (θm), ε
+
M (θM ) = ε+m (θM ), ε

−
M (θM ) = ε−m (θM ) (see Fig. 1a). For simplicity

reasons, we have assumed in (3) that the deformation behavior in tension and compression tests is symmetric,
although, in general, for SMAs this is not true.

The other material parameters entering (2) have the following meaning. According to (22), α = const.
> 0 is the thermal expansion coefficient of the material in the austenite phase A, while the temperature
θT ∈ (θm, θM ) is a reference temperature with the property that the undeformed material in phase A is stress
free, i.e., σeq(0, θT ) = 0.

Because in traction tests the hysteresis loop moves upwards, while in compression tests, it moves downwards

as the temperature grows, it follows that necessarily
dσ+

M (θ)

dθ and dσ+
m (θ)

dθ are positive, while
dσ−

M (θ)

dθ and dσ−
m (θ)

dθ
are negative. Moreover, these quantities can be determined experimentally, and it is found that, in general, they
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Table 1 Mechanical and thermal parameters for the thermoelastic model

Elastic modulus of the austenite phase A E1 (GPa) 42
Elastic modulus of the martensite variants M± E3 (GPa) 20
Elastic modulus of the spinodal regions I ± −E2 (GPa) −6.55
Thermal expansion coefficient in the austenite phase A α ( ◦K−1) 10−5

Mass density ρ (kg/m3) 8,000
Specific heat in the austenite phase A C ( J/Kg/ ◦C) 500

are constant (see Shaw and Kyriakides [27], Shaw [24]). Therefore, the two material constants m and M can

be determined from relations
dσ+

M (θ)

dθ = E1 M > 0 and dσ+
m (θ)

dθ = E1 M + E2(M − m) > 0 once the elastic
moduli are known.

In order to study the qualitative as well as quantitative behavior of steady, structured shock and interphase
layers in a phase transforming bar, we chose material parameters for the thermoelastic model that ensure a
good agreement with the pseudoelastic response of a NiTi strip in traction tests, in the range of temperatures
between 15 and 55 ◦C, considered and illustrated in Shaw [24, Fig. 3]. Table 1 shows the chosen thermal
and mechanical constants which, together with the remaining parameters M = 1.78571 × 10−4 ◦K−1,m =
1.746×10−4 ◦K−1, θm = 241.15 ◦K, θM = 10000. ◦K, θT = 293.15 ◦K, lead to the isothermal stress–strain
curves σ = σeq(ε, θ) illustrated in Fig. 1b.

The thermoelastic relation (1) is similar to that derived from physical considerations on the behavior of shape
memory alloys by Abeyaratne et al. [26]. It has been used in Făciu and Mihăilescu-Suliciu [22] as an equilibrium
relation for a Maxwellian rate-type approach to the thermoelasticity and for numerical simulations of quasi-
static strain-controlled tests. These simulations of the evolution of the strain and temperature distribution in
a specimen have shown a good agreement with the full-field temperature measurements taken by Shaw and
Kyriakides [27] in quasi-static laboratory experiments.

Let us note that for the numerical parameters used we get
dσ+

M (θ)

dθ = − dσ−
M (θ)

dθ = 7.49 MPa/◦K, which is a
value appropriate to that obtained experimentally in Shaw [24, Fig. 3] for the rate of increase with respect to

the temperature of the stress plateau for A → M+ transformation, while dσ+
m (θ)

dθ = − dσ−
m (θ)

dθ = 7.52MPa/◦K.
Moreover, the condition H3 in Part I [1], which assumes the existence of a monotone curve in the ε−θ plane

across which ∂σeq
∂θ

changes its sign, is satisfied. For the numerical entries used, this curve is just ε = ε+M (θ)
(see Fig. 1a). This property is an essential particular feature of the proposed thermoelastic model, in agreement
with the experimental observations, and allows to characterize the thermal dependence of the hysteresis loop
in traction or compression tests.

The PDE system describing the motion of a thermoelastic bar in the absence of heat conduction is given
by

∂ε

∂t
− ∂v

∂X
= 0, ρ

∂v

∂t
− ∂σeq(ε, θ)

∂X
= 0, ρCeq(ε, θ)

∂θ

∂t
− θ

∂σeq(ε, θ)

∂θ

∂v

∂X
= 0 (4)

where v = v(X, t) is the velocity of a particle X at time t . Ceq(ε, θ) is the specific heat of the thermoelastic
material and is defined in Appendix A by relation (28).

It is known (see for instance Part I [1]) that the adiabatic thermoelastic system (4) is hyperbolic on those

regions of the ε − θ plane where ∂σeq
∂ε

+ θ
ρCeq

(
∂σeq
∂θ

)2 ≥ 0 and it is elliptic on the complementary part.

For the piecewise linear thermoelastic model defined by relations (1)–(3) and for the input data in Table 1,
one can verify by using relation (28) in Appendix A that the curves ε = ε±M (θ) and ε = ε±m (θ) delimitate
the regions of hyperbolicity and ellipticity of the system. We identify the domains of hyperbolicity with the
so-called stable phases of the material. These are the austenite phase A = {(ε, θ)|ε−M (θ) ≤ ε ≤ ε+M (θ)}
and the martensite variants M+ = {(ε, θ)| ε ≥ ε+M (θ)} and M− = {(ε, θ)| ε ≤ ε−M (θ)} (see Fig. 1). The
domains I + = {(ε, θ)| ε+M (θ) < ε < ε+m (θ)} and I − = {(ε, θ)| ε−m (θ) < ε < ε−M (θ)}, where phase transitions
take place, correspond to the elliptic regions of the adiabatic system and are usually called unstable phases
(spinodal regions) of the material. In these regions, the initial-boundary value problems for the adiabatic system
are ill-posed and they are dismissed in a pure thermoelastic approach of phase transitions.
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A propagating discontinuity in a thermoelastic material, whose position in the reference configuration is
X = S(t), separates the thermomechanical states v+, ε+, θ+ and v−, ε−, θ− and satisfies the following jump
conditions and entropy inequality:

�v� = −Ṡ�ε�, �σ � = −ρ Ṡ2�ε�, Ṡ(ρ�eeq� + 〈σ 〉�ε �) = 0, ρ Ṡ�ηeq(ε, θ)� ≤ 0, (5.1-4)

where � f �(t) = f (S(t) + 0, t) − f (S(t) − 0, t) and 〈 f 〉 = 1
2 ( f (S(t) + 0, t) + f (S(t) − 0, t)) denote the

jump and the average, respectively, of any field quantity f (X, t) across the discontinuity. This discontinuity
corresponds to an adiabatic thermoelastic shock wave, or a phase boundary, according to whether the particles
separated by the discontinuity are in the same phase, or in distinct phases.

Assume that Ṡ > 0 and the thermomechanical state ahead of the shock (ε+, θ+) is known. Then, the
energy jump condition (5.3), known as the Rankine–Hugoniot equation, provides restrictions on the back
states (ε−, θ−) which can be reached in a discontinuous process. The function

H(ε, θ; ε+, θ+) = ρeeq(ε, θ)− ρe+ − 1

2
(σeq(ε, θ)+ σ+)(ε − ε+) (6)

is called the Hugoniot relation based at (ε+, θ+) where e+ = eeq(ε
+, θ+) and σ+ = σeq(ε

+, θ+). For our
piecewise linear thermoelastic model, it can be explicitly determined as a quadratic function of θ from the
expression (30) of the internal energy e = eeq(ε, θ) given in Appendix A.

The implicit equation H(ε, θ; ε+, θ+) = 0 has in this case a unique global solution with respect to ε called
the temperature–strain Hugoniot locus based at (ε+, θ+), i.e.,

θ = θH (ε; ε+, θ+) ⇔ H(ε, θH (ε; ε+, θ+)) = 0 for any ε. (7)

Its image through the stress response function

σ = σH (ε; ε+, θ+) ≡ σeq(ε,ΘH (ε; ε+, θ+)) (8)

is called the stress–strain Hugoniot locus based at (ε+, σ+). Relations (7) and (8) describe all reachable back
states (ε−, θ−, σ− = σeq(ε

−, θ−)) in a wave discontinuity which has (ε+, θ+, σ+ = σeq(ε
+, θ+)) as a front

state.

3 Augmented theory: Maxwellian rate-type approach

We consider the following Maxwellian rate-type constitutive equation as augmented model of the thermoelastic
material (see Part I [1])

∂σ

∂t
− E

∂ε

∂t
= − E

μ
(σ − σeq(ε, θ)), (9)

where E = const. > 0 is called the dynamic Young modulus, μ = const. > 0 is a “viscosity” coefficient and
σ = σeq(ε, θ) is the piecewise linear thermoelastic relation described by (1)–(3). Let us note that τ = μ

E is a
relaxation time of the model.

When we apply this constitutive model to SMAs, it is improper to speak about the “viscosity” of the
material. It is better to speak about the relaxation time as a parameter which allows to describe the fact that the
transition of a particle from one stable phase to another does not occur instantaneously, but it requires always
a finite phase transition time. Due to a certain tradition concerning the terminology related to this constitutive
relation and for simplicity reasons in the following, we shall often use the term “viscosity” instead of time of
relaxation, or “viscosity effects” instead of “rate-type effects.” In the limit of vanishing relaxation time, this
constitutive equation is seen as a rate-type approximation of the thermoelastic model.

The free energy of the constitutive Eq. (9) has been extensively analyzed in Part I [1] (see also [22]). It has
been shown that the Maxwellian rate-type model admits a free energy function ψ = ψMxw(ε, σ, θ), uniquely
determined by the equilibrium stress–strain–temperature relation σ = σeq(ε, θ) and by the instantaneous

Young’s modulus E (modulo an additive function of temperature) if and only if ∂σeq
∂ε

< E , at the points where
the derivative makes sense. It has the form

ρψMxw(ε, σ, θ) = σ 2

2E
− σ 2

eq(ε̃, θ)

2E
+

ε̃∫

ε0

σeq(s, θ)ds + ρφ1(θ), (10)
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Table 2 Mechanical parameters for the augmented theory

Dynamic Young’s modulus E (GPa) 43 or 50
“Viscosity” coeffcient μ (GPa) 0.0003 . . . 3
Heat conductivity coefficient κ (W/m/◦K) 0 or 20

where ε̃ = ε̃(ε, σ, θ) is uniquely defined by the algebraic equation

σ − Eε = σeq(ε̃, θ)− E ε̃. (11)

The entropy and the specific heat of the Maxwellian rate-type model are given by ηMxw(ε, σ, θ) = − ∂ψMxw
∂θ

and CMxw(ε, σ, θ) = −θ ∂2ψMxw
∂θ2 , respectively, at the points where the derivatives make sense. For the piece-

wise linear equilibrium relation given by (1)–(3), the expressions of the smooth free energy function, of the
discontinuous and piecewise smooth specific heat function, and the continuous and piecewise smooth internal
energy function of the Maxwellian rate-type constitutive equation are given in Appendix B.

This rate-type constitutive approach induces an internal dissipation. We also consider here a second dissi-
pative mechanism described by the Fourier law of heat conduction for the axial heat flux q = −κ ∂θ

∂X , where
κ = const. > 0 is the heat conductivity coefficient.

The material data used in this paper to characterize the rate-type effects and the heat transfer effects in the
numerical investigation are given in Table 2. We note that the requirements E1 < E and E2 < E , imposed by
the second law of thermodynamics, are satisfied, and the value used for the heat conductivity coefficient κ is
an usual one for a SMA.

The PDEs system, in the unknown v, ε, σ, θ describing the motion of a Maxwellian rate-type phase trans-
forming bar, is composed by the constitutive relation (9), the compatibility equation, the balance of momentum,
and the balance of energy

∂ε

∂t
− ∂v

∂X
= 0, ρ

∂v

∂t
− ∂σ

∂X
= 0, (12)

ρCMxw
∂θ

∂t
= E

μ
ρ
∂ψMxw

∂σ
(σ − σeq(ε, θ))− E

μ
ρθ
∂2ψMxw

∂θ∂σ
(σ − σeq(ε, θ))+ κ

∂2θ

∂X2 . (13)

One observes here that the variation of the temperature in the diffusion Eq. (13) is determined by the
competition between three additive terms in its right-hand side. The first one is related to the internal dissipation
which always contributes to the increase in the temperature during a thermomechanical process. The second
one is related to the latent heat released or absorbed by the material and can be positive or negative. The third
term is related to the thermal dissipation by axial heat conduction.

4 Traveling waves

To investigate the internal structure of a phase boundary, we now seek a solution to the system composed by Eqs.
(9), (12), and (13) in the form of traveling wave: v = v̂(ξ), ε = ε̂(ξ), σ = σ̂ (ξ), θ = θ̂ (ξ) where ξ = X − Ṡt
and Ṡ =const. is the speed of the wave. By requiring that the traveling wave connects two equilibrium states
behind and in front of the propagating interface, i.e., (ε̂, σ̂ , θ̂ , v̂)(±∞) = (ε±, σ± = σeq(ε

±, θ±), θ±, v±)
one gets the following. The limit values of the traveling waves have to satisfy the jump relations (5.1-4) for the
associated thermoelastic material. The velocity–strain pairs (v̂(ξ), ε̂(ξ)) belong to a straight line in the v − ε
plane of slope −Ṡ and the stress–strain pairs (σ̂ (ξ), ε̂(ξ)) belong to a straight line of slope ρ Ṡ2 in the ε − σ
plane called the Rayleigh line and denoted by σ = σR(ε), i.e.,

v̂(ξ) = v+ − Ṡ(ε̂(ξ)− ε+), σ̂ (ξ) = σR(ε̂(ξ))
def= σ+ + ρ Ṡ2(ε̂(ξ)− ε+) (14)

where ρ Ṡ2 = (σ+ − σ−)/(ε+ − ε−).
The pairs (ε̂(ξ), θ̂ (ξ)) satisfy the dynamical system

ε̂′ = − E

μṠ(E − ρ Ṡ2)
R(ε̂, θ̂ ), lim

ξ→±∞ ε̂(ξ) = ε±,

θ̂ ′ = − Ṡ

κ
HMxw(ε̂, θ̂ ), lim

ξ→±∞ θ̂ (ξ) = θ±,
(15)
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where, if Ṡ > 0,

R(ε, θ; ε+, θ+, ε−) ≡ σR(ε)− σeq(ε, θ) = σ+ + ρ Ṡ2(ε − ε+)− σeq(ε, θ), (16)

HMxw(ε, θ; ε+, θ+, ε−) ≡ ρeMxw
(
ε, σR(ε), θ

) − ρe+ − 1

2

(
ε − ε+

)(
σR(ε)+ σ+)

. (17)

The states (ε±, θ±) are fixed points for the dynamical system and they are the intersection points between the
curves R(ε, θ) = 0 and the Hugoniot locus H(ε, θ) = 0 in the ε − θ plane. The pairs (ε±, σ±) represent the
intersection points of the Rayleigh line σ = σR(ε) with the stress–strain Hugoniot curve σ = σH (ε; ε+, θ+)
in the ε − σ plane.

The topological properties of the curve HMxw(ε, θ) = 0 and R(ε, θ) = 0 characterize the main features
of the profile layers defined by the Maxwellian rate-type constitutive equation (9) and/or by the Fourier heat
conduction law, respectively. They have been qualitatively investigated in Part I [1] where thermodynamical
aspects have been put into evidence. Thus, according to (15), the set {(ε, θ)|HMxw(ε, θ; ε+, θ+, ε−) = 0}
describes the trajectory in the ε− θ plane of a traveling wave solution structured only by the time of relaxation
μ
E (or, equivalently by the “viscosity” μ) in the absence of heat conduction, i.e., when κ = 0. Since ∂HMxw

∂θ
=

CMxw(ε, σR(ε), θ) > 0, this set can be uniquely represented as a curve-like function connecting the front and
the back states (ε±, θ±), i.e.,

θ = ΘMxw(ε; ε+, θ+, ε−) ⇔ HMxw(ε,ΘMxw(ε; ε+, θ+, ε−)) = 0 for ε between ε+ and ε−. (18)

Moreover, the image of this curve through the equilibrium relation σ = σeq(ε, θ) is given by the function

σ = σMxw(ε; ε+, θ+, ε−) ≡ σeq(ε,ΘMxw(ε; ε+, θ+, ε−)), (19)

which connects the front and back states (ε±, σ±) in the ε − σ plane.
If we denote by �(ε̂(ξ)) = (ε̂(ξ), σR(ε̂(ξ)),ΘMxw(ε̂(ξ))) the trajectory of a “viscous,” heat non-

conducting traveling wave solution in the ε − σ − θ space, one derives the following relation (see Part I
[1, Sect. 5.1.2]):

dΘMxw(ε)

dε
= E − ρ Ṡ2

EρCMxw(�(ε))

(
σR(ε)− σeq(ε̃, ΘMxw(ε))+ EΘMxw(ε)

E − ∂σeq(ε̃, ΘMxw(ε))
∂ε

∂σeq(ε̃, ΘMxw(ε))

∂θ

)
,

(20)

where ε̃ = ε̃(ε) is the unique solution of Eq. (11) for σ = σR(ε) and θ = ΘMxw(ε). The difference σR(ε)−
σeq(ε̃, ΘMxw(ε)) is related with the internal dissipation, while the last term in the right parenthesis is related

to the latent heat released or absorbed inside the layer and depends essentially on the sign of ∂σeq
∂θ

. Therefore,
the temperature variation inside a “viscous,” heat non-conducting profile layer has two additive sources: the
internal dissipation, which always contributes to the increase in the temperature inside the layer, and the latent
heat which can act in both senses, i.e., to increase or decrease the temperature. Let also note that, in order to
establish from the above relations whether the temperature inside the layer increases or decreases between ε−
and ε+, we have to take into account whether the forward propagating traveling wave (Ṡ > 0) is compressive
(ε− < ε+) or expansive (ε− > ε+).

For our piecewise linear equilibrium relations (1)–(3), the function HMxw(ε, θ; ε+, θ+, ε−) given by rela-
tion (17) is quadratic in θ and ε and has been calculated using the internal energy (34) given in Appendix B.
From here, the function θ = ΘMxw(ε; ε+, θ+, ε−) has been explicitly obtained as a continuous and piecewise
C1 function.

In the absence of “viscosity,” i.e., whenμ = 0, a traveling wave solution structured only by heat conduction
has to satisfy the reduced system

R(ε̂, θ̂ ) = 0, and θ̂ ′ = − Ṡ

κ
HMxw(ε̂, θ̂ ), lim

ξ→±∞ θ̂ (ξ) = θ±. (21.1-3)

Thus, the set {(ε, θ)|R(ε, θ; ε+, θ+, ε−) = 0}, called the Rayleigh set in the ε − θ plane, corresponds to the
trajectory in the ε− θ plane of a “non-viscous,” heat conducting traveling wave solution. It has been shown in
Part I [1] and it is illustrated in the numerical examples below that there exists a major difference in the effect
of “viscosity” and heat conduction on the structure of the profile layers in the sense that a “non-viscous,” heat
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conducting profile layer, solution of problem (21.1-3), in general, sweeps only some portions of the Rayleigh
set leading to the so-called isothermal jumps in strain and stress inside the profile layers.

Since ∂R(ε,θ)
∂ε

= − ∂σeq
∂θ

, it follows that the Rayleigh set, i.e., the solution of the implicit equation R(ε, θ) = 0,
is uniquely representable as a function θ = ΘR(ε; ε+, θ+, ε−) connecting the front and back states (ε±, θ±)
if ∂σeq

∂θ
has a constant sign in a domain containing (ε±, θ±). Moreover, its image through the equilibrium

stress response function σ = σeq(ε, θ) is the Rayleigh line, i.e., σR(ε) = σeq(ε,ΘR(ε; ε+, θ+, ε−)). For
the piecewise linear stress response function (1)–(3), the function θ = ΘR(ε; ε+, θ+, ε−) is a continuous
and piecewise linear function. When ∂σeq

∂θ
changes its sign only once in a domain containing (ε±, θ±), then

the Rayleigh set is a disconnected set representable by two functions of ε, one θ = Θ+
R (ε) passing through

(ε+, θ+) and the other θ = Θ−
R (ε) passing through (ε−, θ−).

Admissibility condition. In Part I [1, Sect. 5.1], it has been shown that a chord criterion with respect to the
curve σ = σMxw(ε; ε+, θ+, ε−) defined by (19) is, in general, a necessary and sufficient condition for the
existence of a unique solution for the nonlinear autonomous system (15). This is also an admissibility condition
for the selection of physical relevant jump discontinuities for the associated adiabatic thermoelastic system (4).
Moreover, it has been shown that this condition is equivalent with a chord condition with respect to the stress–
strain Hugoniot locus σ = σH (ε; ε+, θ+) defined by (8). Thus, the problem of the existence and uniqueness of
a solution for the problem (15) has been reduced to a condition which only depends on the energetic properties
of the associated thermoelastic model.

This selection criterion claims: if Ṡ > 0 and the front state is (ε+, θ+) and the Hugoniot back state is
(ε−, θ−) then a compressive wave discontinuity, i.e., ε+ > ε−, is admissible if and only if the Rayleigh line
σR(ε) which joins (ε+, σ+ = σeq(ε

+, θ+)) to (ε−, σ− = σeq(ε
−, θ−)) lies below the graph of the function

σ = σH (ε; ε+, θ+) for ε ∈ (ε−, ε+), while an expansive wave discontinuity, i.e., ε+ < ε−, is admissible if
and only if the Rayleigh line σR(ε) lies above the graph of the Hugoniot locus for ε ∈ (ε+, ε−). If Ṡ < 0, the
front state is (ε−, θ−) and the Hugoniot back state is (ε+, θ+) then the above statement remains valid if one
inverts the superscripts + with −.

5 Numerical results and discussions

The heating or the cooling of a transformed zone in a high strain-rate test is a main characteristic of a phase
transforming material like SMA. Therefore, in an impact experiment, a phase boundary will start to propagate,
and a large variation of the temperature should appear across it. This could be detected by infrared measurements
providing a valuable hint concerning the propagation of a phase boundary. That is why, in the following, we
investigate, for a model built in agreement with experimental data, how large is the variation of the temperature
across such a phase boundary and how the internal dissipation and the latent heat influences the profile of the
temperature inside the layer.

5.1 Compressive A → M− interphase layers
( ∂σeq (ε

±,θ±)
∂θ

< 0
)

Let us investigate the internal structure of the traveling wave solutions for a compressive A → M− impact-
induced interphase layer when at the front and back state and inside the profile layer we have ∂σeq

∂θ
< 0.

This condition corresponds to the classical case investigated in the framework of thermoelastic fluids (see
for instance Gilbarg [28], Pego [29]) where the variation of the pressure p with respect to the temperature is
positive, i.e., ∂p

∂θ
> 0.

We consider the front state (ε+, θ+) at the boundary between phase A and the unstable region I −, i.e., ε+ =
ε−M (θ+) (Fig. 3). That means, the strain–stress front state is located at the point (ε+, σ+ = σ−

M (θ
+))where the

slope with respect to the strain of the isotherm σ = σeq(ε, θ
+) changes its sign (Fig. 2). Any back state (ε−, θ−)

has to lie on the temperature–strain Hugoniot locus based at (ε+, θ+), i.e., it satisfies relation θ = θH (ε; ε+, θ+)
(Fig. 3), while the back state (ε−, σ−) lies on the stress–strain Hugoniot locus σ = σH (ε; ε+, θ+) based at
(ε+, σ+) (Fig. 2). We consider five different back states in the phase M− (ε−i , θ

−
i ), i = 1, . . . , 5, and in

all cases, the chord criterion with respect to the stress–strain Hugoniot locus σ = σH (ε; ε+, θ+) based at
(ε+, σ+) is satisfied, i.e., the Rayleigh line lies always below the Hugoniot locus for ε ∈ (ε−i , ε+). This
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Fig. 2 The stress–strain Hugoniot locus based at (ε+, σ+), σ = σH (ε; ε+, θ+) and the Rayleigh lines corresponding to five
admissible compressive jump discontinuities (ε−i , θ

−
i ), i = 1, . . . , 5 from phase A to martensitic variant M−

Fig. 3 A → M− interphase layers in the phase diagram; the temperature–strain Hugoniot locus based at (ε+, θ+), θ =
θH (ε; ε+, θ+); the explicit solutions θ = ΘR(ε; ε+, θ+, ε−5 ) and θ = ΘMxw(ε; ε+, θ+, ε−5 ) of the implicit equations R = 0 and
HMxw = 0 given by Eqs. (16) and (17), respectively

condition ensures the existence and uniqueness of a solution of the system (15), for any μ > 0 and κ > 0 (see
Part I [1, Sect. 5.2]).

Let us denote by
(
ε̂(ξ ;μ, κ), θ̂(ξ ;μ, κ)) such a traveling wave solution and by θ = Θ(ε;μ, κ) its trajectory

in the temperature–strain plane. We consider in Fig. 3 for the back state ε− = ε−5 two extreme situations. First,
the trajectory of a “viscous” (μ > 0), heat non-conducting (κ = 0) traveling wave solution θ = Θ(ε;μ, 0).
This is just the curve θ = ΘMxw(ε; ε+, θ+, ε−5 ) defined by relation (18). Second, we consider the case when
the “viscosity” effect is practically negligible with respect to the heat conductivity effect and we plot the
trajectory θ = Θ(ε;μ = 0.0003 GPa s, κ = 20 W/m/◦K).

The function θ = ΘMxw(ε; ε+, θ+, ε−i ) has to be monotone decreasing for ε ∈ (ε−i , ε+), i = 1, . . . , 5.
This follows from relation (20) as a consequence of the fact that the chord condition σR(ε) < σMxw(ε) implies
σR(ε) < σeq(ε̃(ε),ΘMxw(ε)), for ε ∈ (ε−i , ε+), i = 1, . . . , 5 (see Part I [1, Sect. 5.2.1 Case C1]) and on

the other side, because ∂σeq
∂θ

< 0 in phase M− and in the spinodal region I −. According to the remarks
following relation (20) this means that both the internal dissipation and the latent heat lead to the increase in
the temperature inside a “viscous,” heat non-conducting interphase layer. Thus, after the passage of a wave, the
back state temperature is larger than the front state temperature, i.e., θ−

i > θ+, i = 1, . . . , 5. The structure of
the “viscous,” heat non-conducting interphase layers corresponding to the five compressive jumps is illustrated
in Fig. 4. The way in which the back state temperature increases as the absolute value of the back strain increases
and the corresponding values of the propagation speed of the phase boundary is illustrated in Table 3.

We say that these compressive waves are of heating type. The significant rise of the temperature after the
passage of the moving phase boundary is due to the latent heat released by the material in this dynamic process
and expresses the exothermic character of A → M− phase transformation. In fact, it is a consequence of the
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Fig. 4 Structure of “viscous,” heat-non-conducting interphase layers corresponding to the compressive jumps in Figs. 2 and 3

Table 3 Back states and phase boundary speed Ṡ when the front state is (ε+ = −0.011, θ+ = 303.15 ◦K, σ+ = −464 MPa)

Back state 1 2 3 4 5

ε− −0.057 −0.067 −0.077 −0.087 −0.097
θ− (◦K) 330.8 335.3 339.9 344.5 349.1
σ− = σeq (ε

−, θ−) (MPa) −480 −699 −918 −1,138 −1,358

Ṡ =
√

σ+−σ−
ρ(ε+−ε−) (m/s) 206 724 927 1,052 1,139

large variation of the equilibrium stress response function with respect to the temperature. Indeed, ∂σeq
∂θ

= −8.6

MPa/◦K in the unstable region I − and ∂σeq
∂θ

= −4.2 MPa/◦K in the phase M−.
Let us consider the opposite case when the heat conductivity effect is much more important than the

“viscosity” effect. First, we observe in the phase diagram in Fig. 3 that the Rayleigh set, θ = ΘR(ε; ε+, θ+, ε−5 ),
solution of the implicit equation (21.1) is non-monotone. Second, we recall that in this case the trajectory
θ = Θ(ε;μ, κ) of a traveling wave solution of the problem (15) has to be monotonously decreasing for any
μ > 0 and κ > 0 for ε ∈ (ε−, ε+) in Fig. 3 (see Part I [1, Sect. 5.2.1]). Moreover, for a fixed heat conductivity
κ = κ̄ and μ → 0, the trajectories θ = Θ(ε;μ, κ) are increasingly close to the monotone descending parts of
the curve θ = ΘR(ε) and approach the solution of the reduced system (21.1-3).

For κ = 20 W/m/◦K and μ = 0.0003 GPa s the trajectory of the traveling wave solution is represented by
a dotted line in the phase diagram in Fig. 3. It is composed by a nearly horizontal line which starts at the back
state (ε−5 , θ

−
5 ), passes very close to a state (ε∗, θ∗), where θ−

5 = ΘR(ε
∗) and is followed by a curve extremely

close to the curve θ = ΘR(ε) and ends at the front state (ε+, θ+).
The corresponding structure of the strain, temperature, and stress interphase layer is represented in Fig. 5.

This numerical example illustrates that when the only structuring mechanism is the heat conduction, the
internal structure of a “non-viscous,” heat conducting interphase layer can contain isothermal jumps in strain
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(a)

(b)

(c)

Fig. 5 Structure of interphase layers when the conductivity effect dominates the “viscosity” effect for the back strain ε− = ε−5
in Figs. 2 and 3

and stress inside the layer. Indeed, one observes in Fig. 5a,c that the interphase layer approximates a jump in
strain from ε−5 to ε∗ and a jump in stress from σ−

5 to σ ∗ = σR(ε
∗) = σ+ + ρ Ṡ2(ε∗ − ε+). Therefore, in this

case, the trajectory of an interphase layer in the stress–strain plane sweeps the portion of the Rayleigh line
ranging from ε+ to ε∗ and is followed by a jump from (ε∗, σ ∗) to (ε−5 , θ

−
5 ) (Fig. 2).

Let us note in Fig. 6 that the entropy of the Hugoniot back state (ε−, θ−) is larger than the entropy of the
front state (ε+, θ+). Therefore, this jump discontinuity is compatible with the second law of thermodynamics.
On the other hand, if one investigates the influence of the “viscosity” and of the heat conductivity on the
behavior of the entropy inside an interphase layer, one observes an important difference on their structuring
role. Indeed, when the “viscosity” effect dominates the heat conductivity effect then the variation of entropy
inside the profile layer is monotone (Fig. 6a). In the opposite case, when the heat conductivity effect dominates
the “viscosity” effect, then the entropy variation is non-monotone, and even more its values can become inside
the profile layer larger than the entropy of the Hugoniot back state (Fig. 6b). This phenomenon is known as
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(a)

(b)

Fig. 6 Entropy variation inside A → M− interphase layers. a Monotone variation—the “viscosity” effect dominates the con-
ductivity effect. b Non-monotone variation and “overshoot” phenomenon—the conductivity effect dominates the “viscosity”
effect

the “entropy overshoot.” It has been reported for instance by Landau and Lifschitz [30, Chap. IX, §87] in gas
dynamics and by Dunn and Fosdick [23] in thermoelastic materials. Let also note in Fig. 6b that when the heat
conduction is the only structuring parameter of the interphase layer, the entropy can have a jump inside the
layer from η− to η∗ = ηMxw(ε

∗, σ ∗, θ∗).

5.2 Expansive M− → A interphase layers
( ∂σeq (ε

±,θ±)
∂θ

< 0
)

We analyze now thermomechanical features of the interphase layers in the expansive case, i.e., ε+ < ε−,
corresponding to impact-induced M− → A phase transformations. Inside the profile layer, we have again
∂σeq
∂θ

< 0. We consider the front state (ε+, θ+) located at the boundary between phase M− and the unstable
region I −, i.e., ε+ = ε−m (θ+) (Fig. 8). That means, the strain–stress front state is located at the point (ε+, σ+ =
σ−

m (θ
+)) where the slope with respect to the strain of the isotherm σ = σeq(ε, θ

+) changes its sign (Fig. 7).
This also corresponds to a local maximum of the Hugoniot stress–strain relation σ = σH (ε; ε+, θ+). Any back
state (ε−, θ−) lies on the temperature–strain Hugoniot locus based at (ε+, θ+), θ = θH (ε; ε+, θ+) (Fig. 8),
while the back state (ε−, σ−) lies on the stress–strain Hugoniot locus σ = σH (ε; ε+, θ+) based at (ε+, σ+)
(Fig. 7). We consider four different back states in phase A (ε−i , θ

−
i ), i = 1, . . . , 4 and in all cases, the chord

criterion with respect to the stress–strain Hugoniot locus σ = σH (ε; ε+, θ+) is satisfied, i.e., the Rayleigh line
lies always above the Hugoniot locus for ε ∈ (ε+, ε−i ).

We consider here only “viscous,” heat non-conducting interphase layers. Their trajectories in the
phase diagram plane, corresponding to the four considered back states, are given by the curves θ =
ΘMxw(ε; ε+, θ+, ε−i ), i = 1, . . . , 4 illustrated in Fig. 8. Their images σ = σMxw(ε; ε+, θ+, ε−i ), i = 1, . . . , 4
in the stress–strain plane defined by relation (19) are illustrated in Fig. 7. One sees that the chord criterion with
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Fig. 7 The stress–strain Hugoniot locus based at (ε+, σ+), σ = σH (ε; ε+, θ+) and the Rayleigh lines corresponding to four
admissible expansive jump discontinuities (ε−i , θ

−
i ), i = 1, . . . , 4 from martensitic variant M− to phase A

Fig. 8 M− → A interphase layers in the phase diagram; the temperature–strain Hugoniot locus based at (ε+, θ+), θ =
θH (ε; ε+, θ+); the trajectories of the “viscous” (μ > 0), heat non-conducting (κ = 0) traveling wave solutions θ =
ΘMxw(ε; ε+, θ+, ε−i ), i = 1,…,4

respect to these curves is also satisfied, that is, the Rayleigh lines connecting the front state (ε+, σ+) and the
back state (ε−i , σ

−
i ) lie always above the curve σ = σMxw(ε; ε+, θ+, ε−i ), for ε ∈ (ε+, ε−i ), i = 1, . . . , 4.

In this case, the internal dissipation and the latent heat act in opposite sense. Thus, while the internal
dissipation is a source of heating, the latent heat is a source of cooling inside the interphase layer. Indeed,
the first term in relation (20) is positive because the chord condition σR(ε) > σMxw(ε; ε+, θ+, ε−i ), for

ε ∈ (ε−i , ε+), i = 1, . . . , 4 is fulfilled, but the second term is negative because ∂σeq
∂θ

< 0 along the traveling
wave solution. Since the calculated functions θ = ΘMxw(ε; ε+, θ+, ε−i ) in Fig. 8 are strictly decreasing for
ε ∈ (ε+, ε−i ), i = 1, . . . , 4, it results that the cooling due to the latent heat absorbed by the material inside the
interphase layer dominates the heating due to the internal dissipation. Therefore, after the passage of the wave,
the back state temperature decreases considerably, i.e., θ−

i < θ+, i = 1, . . . , 4. We say that these expansive
waves are of cooling type.

The structure of the strain and temperature interphase layers when the only structuring mechanism is the
“viscosity” corresponding to the four expansive jumps is illustrated in Fig. 9. The way in which the back state
temperature changes as the back strain increases and the corresponding values of the propagation speed of the
phase boundary is illustrated in Table 4.

The decrease in the back state temperature after the passage of the wave is obviously due to the latent heat
absorbed by the material inside the interphase layer. Even in the case of a phase boundary propagating with
the small speed of 28 m/s (see for instance case 0 in Table 4), the temperature drops by more than 24 ◦K. This
behavior is natural and in agreement with the fact that the M− → A phase transformation is endothermic.

On the other side, one notes that the back state temperature θ−
i increases as the back state strain ε−i increases.

This is because the internal dissipation is proportional with the area between the Rayleigh line and the curve
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(a)

(b)

Fig. 9 Structure of “viscous,” heat non-conducting interphase layers corresponding to the four expansive jumps in Figs. 7 and 8

Table 4 Back states and phase boundary speed Ṡ when the front state is (ε+ = −0.05, θ+ = 303.15 ◦K, σ+ = −223.2 MPa)

Back state 0 1 2 3 4

ε− −0.0054 −0.002 0.001 0.004 0.007
θ− (◦K) 278.9 279.7 280.3 280.9 281.5
σ− = σeq (ε

−, θ−) (MPa) −222.9 −78.4 47.3 173.0 298.8

Ṡ =
√

σ+−σ−
ρ(ε+−ε−) (m/s) 28 614 814 957 1,070

σ = σMxw(ε; ε+, θ+, ε−i ) for ε ∈ (ε+, ε−i ), i = 1, . . . , 4. As the strain increases, the corresponding area also
increases, and consequently the contribution of the internal dissipation to the heating inside the interphase
layer becomes larger.

5.3 Compressive M+ → M− interphase layers
( ∂σeq
∂θ
(ε+, θ+) > 0 and ∂σeq

∂θ
(ε−, θ−) < 0

)

We investigate now the internal structure of traveling wave solutions for a compressive impact-induced trans-
formation from martensitic variant M+ to martensitic variant M−. In this atypical case, ∂σeq

∂θ
changes its sign

inside the interphase layer. We consider the front state (ε+, θ+) at the border between phase M+ and the
unstable region I +, i.e., ε+ = ε+m (θ+) (Fig. 11). Therefore, the strain–stress front state (ε+, σ+ = σ+

m (θ
+))

is located at the point where the isotherm σ = σeq(ε, θ
+) and the Hugoniot locus σ = σH (ε; ε+, θ+) has a

local minima (Fig. 10).
Let us first consider the case of a “viscous” (μ > 0), heat non-conducting traveling wave solution (κ = 0).

Its trajectory in the temperature–strain plane is described by the function θ = ΘMxw(ε; ε+, θ+, ε−). The image
of this curve in the stress–strain plane, defined by relation (19), is σ = σMxw(ε; ε+, θ+, ε−), and it is plotted
in Fig. 10. One can see that the chord criterion with respect to the Hugoniot locus σ = σH (ε; ε+, θ+) and the
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Fig. 10 Admissible compressive jump from variant M+ to variant M−

Fig. 11 Trajectories of M+ → M− interphase layers in the phase diagram; the explicit solutions θ = Θ±
R (ε) of the implicit

equation R = 0 given by Eq. (16); the explicit solution θ = ΘMxw(ε; ε+, θ+, ε−) of the implicit HMxw = 0 given by Eq. (17)

chord criterion with respect to the curve σ = σMxw(ε; ε+, θ+, ε−) are both satisfied, that is, the Rayleigh line
connecting the front state (ε+, σ+) and the back state (ε−, σ−) lies below both curves for ε ∈ (ε−, ε+). This
condition ensures the existence and uniqueness of a M+ → M− interphase layer for any μ > 0 and κ > 0.

Let us analyze thermomechanical aspects of the interphase layers structured only by the “viscosity.” The
trajectory θ = ΘMxw(ε; ε+, θ+, ε−) in the phase diagram plane crosses the domains M−, I − and A where
∂σeq
∂θ

< 0, and the domain I + where ∂σeq
∂θ

> 0 (Fig. 11). The domains representing the phases are separated by
dotted lines. As we have shown, in the general case in Part I [1, Sect 5.2.1, Case C3], this function has to be
non-monotone.

Indeed, the first term in (20) is always negative since the chord criterion is fulfilled, while the second term
changes its sign for ε ∈ (ε−, ε+). Indeed, it is negative when the pairs (ε̃(ε),ΘMxw(ε)) belong to phase M−,
to the unstable region I − and to phase A, and it is positive when it belongs to the unstable region I +.

The numerical result shows that the curve θ = ΘMxw(ε; ε+, θ+, ε−) is monotonously decreasing in M−
and I − due to the combined heating action of the internal dissipation and latent heat. Therefore, on the
corresponding part of the interphase layer, the temperature has to increase for decreasing ε. On the other side,
the curve θ = ΘMxw(ε; ε+, θ+, ε−) is monotonously increasing when crossing the phase domains A and I +.
That means, according to relation (20), that the contribution of the latent heat to the cooling is larger than the
contribution of the internal dissipation to the heating inside this part of the interphase layer. This implies that
on the corresponding interval of the interphase layer, the temperature has to decrease for decreasing ε. The fact
that the curve θ = ΘMxw(ε; ε+, θ+, ε−) is monotonously increasing when it passes through phase A where
∂σeq
∂θ
(ε,ΘMxw(ε)) < 0 is due to the fact that the pair (ε̃(ε),ΘMxw(ε)) defined in relation (20) belongs to I +,

i.e., ∂σeq
∂θ
(ε̃(ε),ΘMxw(ε)) > 0.

This non-monotone behavior of the function θ = ΘMxw(ε; ε+, θ+, ε−) is an expression of the fact that a
continuous transformation from the variant M+ to the variant M− has to pass through the austenite phase A
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(a)

(b)

(c)

Fig. 12 a Strain and b temperature interphase layers structured only by the “viscosity” corresponding to the compressive jump
in Figs. 10 and 11. c Monotone entropy variation inside the profile layers

and that the transformation M+ → A is endothermic while the transformation A → M− is exothermic. These
circumstances lead to a specific structure of the temperature profile layers.

The strain, temperature, and entropy variation inside this “viscous,” heat non-conducting interphase layer
is illustrated in Fig. 12. One sees that the front state temperature is 303.15 ◦K, the back state temperature
increases to 330.2 ◦K, but inside the layer, there is a significant temperature drop below these two values,
namely to 282.4 ◦K. Thus, the non-monotone variation of the temperature inside the interphase layer shows a
“spike-layer” form whose width depends on the size of μ. Figure 12a, b also illustrates what happens when we
consider the “viscosity” going to zero. For the strain, one gets a sharp discontinuity, but for the temperature
one gets a sharp spike-layer form with two successive jumps. It is obvious that a sharp interface theory for
which only the front and back states are relevant will lose this extreme value of the temperature profile. In
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other words, an important physical aspect related to an impact-induced phase transformation from martensitic
variant M+ to martensitic variant M− will be disregarded, that is, the passage of the particles through the
austenite phase A.

Concerning the entropy variation inside the interphase layers structured only by “viscosity,” we get, as
expected (see Part I [1, Sect. 5.2.3], a monotone variation (Fig. 12c).

Let us analyze the case when both the “viscosity” and the heat conduction are structuring mechanisms of
the interphase layer. When the heat conductivity has the fixed value κ = 20 W/m/◦K and the “viscosity” has
values increasingly smaller, then the graphic of the function θ = Θ(ε;μ, κ), for ε ∈ (ε−, ε+), is illustrated
in Fig. 11. For each μ, this function is non-monotone and has a minimum below the front and back state
temperatures θ±. This minimum value of the temperature increases as μ decreases, i.e., as the role of the
“viscosity” becomes more and more insignificant with respect to the heat conductivity effect.

The structure of strain and temperature interphase layer for “viscosities” ranging fromμ = 3 GPa s (“viscos-
ity” structuring effect is dominant with respect to the heat conductivity effect) toμ = 0.0003 GPa s (“viscosity”
structuring effect is completely negligible with respect to the heat conductivity effect) is illustrated in Figs. 13
and 14. The temperature variation inside the interphase layer is again non-monotone and has a spike-layer form
reflecting the manifestation of the endothermic character of the M+ → A transformation and the exothermic
character of the A → M− phase transformation. The minimum value of the temperature reached inside the
layer varies from 282.3 ◦K for μ = 3 GPa s to 294.3 ◦K (temperature corresponding to YZ line in Fig. 11)
for μ = 0.0003 GPa s. This latter case can be practically assimilated with the case when the only structuring
mechanism of the profile layer is the heat conduction.

Figure 11 also illustrates that the Rayleigh set {(ε, θ)|R(ε, θ) = 0} in the ε−θ phase diagram is composed
by two disconnected piecewise linear curves θ = Θ±

R (ε), one passing trough (ε+, θ+) and the other trough

(ε−, θ−), as a consequence of the fact that ∂σeq
∂θ

has different signs at the front and back state. On the other
side, Fig. 11 shows how for fixed κ and μ → 0 the trajectories θ = Θ(ε;μ, κ) are increasingly close to some
parts of the Rayleigh set in the ε − θ plane and how the solution of the reduced system (24) is approached.

For μ = 0.0003 GPa s the trajectory is composed by a nearly horizontal line starting at the back state
(ε−, θ−), passing very close to a point X = (εx , θx ) which belongs to the branch θ = Θ−

R (ε) of the Rayleigh
set, i.e., Θ−

R (εx ) = θ−, is followed by a curve that matches the curve θ = Θ−
R (ε) until near its minimum

point Y = (εy, θy = Θ−
R (εy)), next is followed by another nearly horizontal line which connects the point Y

with the point Z = (εz, θz = Θ+
R (εz)), belonging to the branch θ = Θ+

R (ε) of the Rayleigh set, and finally is
followed by a curve which matches θ = Θ+

R (ε) and ends at the point (ε+, θ+). This behavior is justified in
Part I [1, Sect 5.2.1 Case C3].

This limit case shows that when the only structuring mechanism is the heat conduction, the strain profile
contains isothermal jumps in strain from ε− to εx and from εy to εz as it is illustrated in Fig. 14a. One
observes that we have a smooth variation of the strain profile only when the trajectory of the “non-viscous,”
heat conducting traveling wave solution sweeps parts of the Rayleigh set in the ε − θ plane. The temperature
profile is continuous and has a minimum corresponding to the temperature at the point Y = (εy, θy) in Fig. 11.

Figures 13c and 14c show how the entropy variation inside the profile layer turns from a monotone
behavior to a non-monotone behavior as the role of the heat conduction increases at the expense of the role
of the “viscosity” as structuring mechanisms. Moreover, the entropy inside the profile layer can become
considerably smaller than its value at the front state η+ and considerably larger than its value at the Hugoniot
back state η− > η+. This behavior is known as the phenomenon of entropy undershoot and entropy overshoot,
respectively. The limiting case μ = 0.0003 GPa s in Fig. 14c also illustrates that in a “non-viscous,” heat
conducting profile layer, i.e., when the only structuring mechanism is the heat conduction, the entropy profile
contains isothermal jumps in entropy.

This example clearly illustrates the profound difference in the effect of “viscosity” (time of relaxation) and
the effect of heat conduction on the structure of transition layers.

Our numerical investigation also offers some insight into the width of the interphase layers. A correspon-
dence between the time of relaxation (“viscosity”) and the thickness of the transition layers is illustrated in
Table 5. As expected, one observes that the width of the profile layer increases as the time of relaxation
increases. Indeed, when the dominant structuring mechanism is the heat conduction (μ = 0.0003 GPa s), then
the width of the transition layer is of the order of hundredths of micrometers (or, tens of nanometers) while
when the “viscosity” effect is dominant (μ = 30 GPa s), the width is of the order of hundreds of micrometers.

Since the heat conduction can be determined independently from laboratory experiments, the identification
of the time of relaxation remains an open problem.
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(a)

(b)

(c)

Fig. 13 Evolution of the a strain and b temperature profile layers corresponding to the compressive jump in Figs. 10 and 11
when the “viscosity” structuring effect diminishes at the expense of the heat conductivity structuring effect. c Transition from
monotone to non-monotone entropy variation inside the profile layers

It is useful to recall that the value of the time of relaxation which has been used in numerical simulations
of quasi-static strain-controlled experiments in Făciu and Mihăilescu-Sulciu [22] and which showed a good
agreement with laboratory tests performed by Shaw and Kyriakides [27] was τ = 10−4 s. The numerical
experiments have put into evidence the capability of the Maxwellian rate-type approach to describe the mech-
anism of phase transformation that occurs via nucleation and growth of phases as a consequence of instability
phenomena. Moreover, we found that, for the values of τ lower than 10−5 s, which enhances the mechanisms
of thermomechanical instability in the spinodal region, or for values of τ larger than 10−2 s, which weakens
the instability phenomena, one gets inaccurate predictions. Therefore, if we consider the proper values for the
time of relaxation τ in the range of 10−4 and 10−3 s, one gets that the width of a propagating interphase layer,



C. Făciu, A. Molinari

(a)

(b)

(c)

Fig. 14 Evolution of the a strain and b temperature profile layers corresponding to the compressive jump in Figs. 10 and 11 when
the conductivity structuring effect largely dominates the “viscosity” structuring effect. c Non-monotone entropy variation inside
the profile layers—entropy “overshoot” and entropy “undershoot” phenomena

structured by the time of relaxation and an usual value of the heat conduction for an SMA, is also of the order
of hundredths of micrometers.

6 Conclusions

The transition across a propagating interface separating two phases of a material cannot be instantaneous.
Therefore, a transition layer should exist. We have modeled the internal structure of this interphase layer by
introducing dissipative mechanisms in the form of Maxwellian rate-type effects and heat conduction. The main
aspects of the response of an SMA have been described by using the thermoelasticity theory with non-monotone
stress–strain relation. A piecewise linear thermoelastic relation has been fitted with laboratory experiments in
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Table 5 Order of magnitude of the width of a profile layer for different values of the “viscosity” parameter μ when E = 50 GPa
and κ = 20 W/m/◦K

“viscosity” μ 0.0003 GPa s 0.003 GPa s 0.03 GPa s 0.3 GPa s 3 GPa s 30 GPa s

Time of relaxation τ = μ
E (s) 6 × 10−6 6 × 10−5 6 × 10−4 6 × 10−3 6 × 10−2 6 × 10−1

Interphase width (µm) ≈ 0.02 ≈ 0.04 ≈ 0.05 ≈ 0.25 ≈ 2 ≈ 30

such a way that the variation with respect to the temperature of the local maxima and minima of the stress–
strain relations matches the rate of increase of the hysteresis stress plateau with respect to the temperature in
traction tests. This approach allowed us to capture in an accurate way the effect of the latent heat in phase
transformation processes.

In studying impact-induced phase transition phenomena, one should focus both from theoretical and exper-
imental point of view on the investigation of thermal aspects. Indeed, our quantitative analysis has put into
evidence that in an SMA, there are large temperature variations across a propagating interphase separating two
phases of the material (more than 20 ◦K) even if its speed is very low. Therefore, such significant temperature
changes should be exploited from the experimental point of view because they are an extremely valuable
indication of a dynamic phase transformation process. We emphasized the influence of the internal dissipation
and of the latent heat on the structure of the interphase layers. Thus, we showed how compressive moving
phase boundaries A → M− are of heating type and how the reverse expansive moving phase boundaries from
M− → A are of cooling type, capturing in this way the influence of the exothermic and endothermic character
of phase transitions. We pointed out that across a propagating interphase layer separating the two variants of
martensite, M+ and M−, the temperature suffers large variation (about 23 ◦K), but the most striking aspect
revealed is that there are places inside the profile layers where some particles experience temperatures consider-
ably lower than that at its front state and its back state. We also note that a sharp interface theory cannot predict
this spike-layer form of the temperature. This phenomenon of temperature undershoot, if it could be detected
experimentally, can be a direct proof of the existence of an internal structure of a propagating phase boundary.
The experimental detection through infrared radiation of a moving interface separating different phases of a
material, and even more of a phenomenon of temperature undershoot/overshoot is a challenge which depends
on the development of highly accurate temperature measurement instruments with high acquisition data.

On the other side, it is reasonable to interpret a propagating interphase layer as a sharp phase boundary if its
thickness is small compared to other dimensions of interest. Therefore, in many practical impact experiments,
the solutions can be constructed by using the adiabatic thermoelastic system endowed with an admissibility
criterion to select physical relevant jump discontinuities. The chord criterion with respect to the Hugoniot
locus can be considered by some authors, who have used the effects of both “viscosity” and strain-gradient
effects (Slemrod [17], Ngan and Truskinovsky [20,21]), as too restrictive since it rules out propagating phase
boundaries near the equilibrium coexistence line, named also subsonic phase boundaries or kinks. On the
other side, according to Vainchtein [16] (see also Vainchtein and Rosakis [31] and Vainchtein [32]), models
which include strain-gradient effects cannot capture realistic hysteresis loops under quasi-static (isothermal)
strain rate–controlled loading conditions. Since different selection criteria may furnish different solutions to a
Riemann problem, only systematic impact experiments as for example those performed by Escobar and Clifton
(1995) could decide which is the physically relevant one.
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Appendix A: The thermodynamic potentials for the thermoelastic model

The stress response function defined by relations (1)–(3) becomes

σ = σeq(ε, θ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

E3ε − (αE3 + a)θ + αE3θT + b, for ε ≤ ε−m (θ)
−E2ε + (αE2 − d)θ − αE2θT + dθm, for ε−m (θ) < ε < ε−M (θ)

E1ε − αE1(θ − θT ), for ε−M (θ) ≤ ε ≤ ε+M (θ)−E2ε + (αE2 + d)θ − αE2θT − dθm, for ε+M (θ) < ε < ε+m (θ)
E3ε − (αE3 − a)θ + αE3θT − b, for ε+m (θ) ≤ ε

(22)
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where

a = M(E1 + E2)− m(E2 + E3), b=(E1 − E3)Mθm +(E2 + E3)(M − m)θM , d = M(E1 + E2). (23)

The free energy ψ = ψeq(ε, θ), the entropy η = ηeq(ε, θ) and the specific heat at constant strain Ceq(ε, θ) of
the thermoelastic model are uniquely determined by the stress response function (modulo an additive function
of temperature) according to relations σeq(ε, θ) = ρ

∂ψeq (ε,θ)

∂ε
, ηeq(ε, θ) = − ∂ψeq

∂θ
(ε, θ), and Ceq(ε, θ) =

−θ ∂2ψeq (ε,θ)

∂θ2 at the points where the derivatives make sense.
If σ = σeq(ε, θ) is only continuous and piecewise smooth like in (1)–(3), then the free energy ρψeq(ε, θ) =
ρφ(θ) + ∫ ε

ε0
σeq(s, θ)ds is of class C1, the entropy ρηeq(ε, θ) = −ρφ′(θ) − ∫ ε

ε0

∂σeq (s,θ)
∂θ

ds as well as the

internal energy e = eeq(ε, θ) = ψeq + θηeq are of class C0. Here, prime denotes the derivative.
The specific heat C = Ceq(ε, θ) is a discontinuous function on its domain of definition. Indeed, let us recall
the following result. If f = f (ε, θ) is continuous and continuously differentiable with respect to θ except for
a single discontinuity whose position is given by a differentiable function ε = ε∗(θ) ∈ (ε1, ε2), then we have

d

dθ

ε2∫

ε1

f (ε, θ)dε =
ε2∫

ε1

∂ f (ε, θ)

∂θ
dε − dε∗(θ)

dθ
� f � (ε∗(θ), θ) (24)

where � f �(ε∗(θ), θ) = f (ε∗(θ)+ 0, θ)− f (ε∗(θ)− 0, θ) and f (ε∗(θ)± 0, θ) denote the one-sided limits of
f (ε, θ) as ε approaches ε∗(θ) from the right and from the left.
Let us take ε0 = ε±M (θm) = α(θm − θT ) the only strain which always lies between ε−M (θ) and ε+M (θ). Then,
when ∂σ

∂θ
is discontinuous across the curves ε = ε±M (θ) and ε = ε±m (θ) by using (24), one derives the specific

heat as

Ceq(ε, θ) = −θ
ε∫

ε0

1

ρ

∂2σeq(s, θ)

∂θ2 ds − θφ′′(θ)

+ θ
ρ

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−dε−M (θ)
dθ

�∂σeq

∂θ

�
(ε−M (θ), θ)− dε−m (θ)

dθ

�∂σeq

∂θ

�
(ε−m (θ), θ), for ε < ε+m (θ)

−dε−M (θ)
dθ

�
∂σeq
∂θ

�
(ε−M (θ), θ), for ε−m (θ) < ε < ε−M (θ)

0 for ε−M (θ) < ε < ε+M (θ)
dε+M (θ)

dθ

�
∂σeq
∂θ

�
(ε+M (θ), θ), for ε+M (θ) < ε < ε+m (θ)

dε+M (θ)
dθ

�
∂σeq
∂θ

�
(ε+M (θ), θ)+ dε+m (θ)

dθ

�
∂σeq
∂θ

�
(ε+m (θ), θ), for ε+m (θ) < ε

(25)

where φ(θ) is determined according to relation

− θφ′′(θ) = Ceq(ε0, θ). (26)

Relation (26) expresses the fact that it is sufficient to know experimentally the specific heat at the constant
strain ε0 for an interval of temperature in order to determine function φ = φ(θ).
Assuming that the specific heat in the austenitic phase is constant, i.e., C(ε0, θ) = C > 0, one gets from
relation (26) that

φ(θ) = −Cθ ln
θ

θT
+ C(θ − θT ), (27)

where we have assumed that ψeq(ε0, θT ) = 0 and ηeq(ε0, θT ) = 0.
The specific heat for the thermoelastic model (1)–(3) is then given by

ρCeq(ε, θ) = ρC + θ

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(E1 + E2)(α − M)2 − (E2 + E3)(α − m)2, if ε ≤ ε−m (θ)
(E1 + E2)(α − M)2, if ε−m (θ) < ε < ε−M (θ)
0, if ε−M (θ) ≤ ε ≤ ε+M (θ)
(E1 + E2)(α + M)2, if ε+M (θ) < ε < ε+m (θ)
(E1 + E2)(α + M)2 − (E2 + E3)(α + m)2, if ε+m (θ) ≤ ε .

(28)
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The free energy and the internal energy are, respectively, given by

ρψeq(ε, θ) = ρφ(θ)+ αE1ε0(θ − θT )− E1

2
ε2

0

+

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

E2
3

2 ε
2 + (σ−

m (θ)− E3ε
−
m (θ))ε + E2+E3

2 (ε−m (θ))2 − E1+E2
2 (ε−M (θ))2, if ε ≤ ε−m (θ)

− E2
2

2 ε
2 + (σ−

M (θ)+ E2ε
−
M (θ))ε − E1+E2

2 (ε−M (θ))2, if ε−m (θ) < ε < ε−M (θ)
E2

1
2 ε

2 − αE1(θ − θT )ε, if ε−M (θ) ≤ ε ≤ ε+M (θ)
− E2

2
2 ε

2 + (σ+
M (θ)+ E2ε

+
M (θ))ε − E1+E2

2 (ε+M (θ))2, if ε+M (θ) < ε < ε+m (θ)
E2

3
2 ε

2 + (σ+
m (θ)− E3ε

+
m (θ))ε + E2+E3

2 (ε+m (θ))2 − E1+E2
2 (ε+M (θ))2, if ε+m (θ) ≤ ε ,

(29)

ρeeq(ε, θ) = ρC(θ − θT )− αE1ε0θT − E1

2
ε2

0

+

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

E3
2 ε

2 + (αE3θT + b)ε + A−θ2 + B−, if ε ≤ ε−m (θ)
− E2

2 ε
2 − (αE2θT − dθm)ε + D−θ2 + F−, if ε−m (θ) < ε < ε−M (θ)

E1
2 ε

2 + αE1θT ε, if ε−M (θ) ≤ ε ≤ ε+M (θ)
− E2

2 ε
2 − (αE2θT + dθm)ε + D+θ2 + F+, if ε+M (θ) < ε < ε+m (θ)

E3
2 ε

2 + (αE3θT − b)ε + A+θ2 + B+, if ε+m (θ) ≤ ε

(30)

where

D± = E1 + E2

2
(α ± M)2, F± = − E1 + E2

2
(αθT ± Mθm)

2,

A± = D± − E2 + E3

2
(α ± m)2, B± = F± + E2 + E3

2
(αθT ∓ (M − m)θM ± Mθm)

2.

(31)

Appendix B: The thermodynamic potentials for the Maxwellian rate-type model

We consider the Maxwellian rate-type constitutive equation (9) having the equilibrium described by the piece-
wise linear stress–strain–temperature relation (1)–(3). According to (10), the free energy function is given
by

ρψMxw(ε, σ, θ) = 1

2E
σ 2 + ϕ1(θ)

+

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

E3
2E(E−E3)

(σ − Eε)2 + (
αE3−a
E−E3

θ − αE3θT −b
E−E3

)
(σ − Eε)+ ϕ+

3 (θ), if σ − Eε ≤ τ+
m (θ),

− E2
2E(E+E2)

(σ − Eε)2 − (
αE2+d
E+E2

θ − αE2θT +dθm
E+E2

)
(σ − Eε)+ ϕ+

2 (θ), if τ+
m (θ) < σ − Eε < τ+

M (θ),
E1

2E(E−E1)
(σ − Eε)2 + E1α

E−E1
(θ − θT )(σ − Eε), if τ+

M (θ) ≤ σ − Eε ≤ τ−
M (θ),

− E2
2E(E+E2)

(σ − Eε)2 − (
αE2−d
E+E2

θ − αE2θT −dθm
E+E2

)
(σ − Eε)+ ϕ−

2 (θ), if τ−
M (θ) < σ − Eε < τ−

m (θ),
E3

2E(E−E3)
(σ − Eε)2 + (

αE3+a
E−E3

θ − αE3θT +b
E−E3

)
(σ − Eε)+ ϕ−

3 (θ), if τ−
m (θ) ≤ σ − Eε,

(32)

where

ϕ1(θ) = E2
1α

2

2(E − E1)
(θ − θT )

2 − ρCθ ln
θ

θT
+ (ρC + αE1ε0)(θ − θT )− E1

2
ε2

0,

ϕ±
2 (θ) = − (E1 + E2)

2(E + E2)(E − E1)

(
τ±

M (θ)
)2
, ϕ±

3 (θ) = ϕ±
2 (θ)+ (E3 + E2)

2(E + E2)(E − E3)

(
τ±

m (θ)
)2
,

(33)

and, by using notation h(ε, θ) = σeq(ε, θ)− Eε,

τ±
M (θ) = h(ε±M (θ), θ) = −Eα(θ − θT )∓ M(E − E1)(θ − θm),

τ±
m (θ) = h(ε±m (θ), θ) = −Eα(θ − θT )± (M − m)(E + E2)(θ − θM )∓ M(E − E1)(θ − θm).
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Assuming that the additive function of temperature φ = φ(θ) in the definition of the free energy func-
tion of the Maxwellian model (10) is the same with the additive function of temperature in the definition
of the free energy of the associated thermoelastic model, we have shown in Part I [1] that at equilibrium
the following relation ρCMxw(ε, σeq(ε, θ), θ) = ρCeq(ε, θ) − θ

( ∂σeq
∂θ

)2/(
E − ∂σeq

∂ε

)
holds. Therefore,

according to relations (26), (27), we have ρCMxw(ε0, σeq(ε0, θ), θ) = ρC − θ(E1α)
2/(E − E1), where

ε0 = ε±M (θm) = α(θm − θT ). Moreover, the free energy and the entropy at the reference equilibrium state are
zero, i.e., ψMxw(ε0, σeq(ε0, θT ), θT ) = ψeq(ε0, θT ) = 0 and ηMxw(ε0, σeq(ε0, θT ), θT ) = ηeq(ε0, θT ) = 0.
Thus, the specific heat of the Maxwellian model is given by

ρCMxw(ε, σ, θ) = ρC − E2
1α

2

(E − E1)
θ + θ

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2A+
Mxw, if σ − Eε ≤ τ+

m (θ),

2D+
Mxw, if τ+

m (θ) < σ − Eε < τ+
M (θ),

0, if τ+
M (θ) ≤ σ − Eε ≤ τ−

M (θ),

2D−
Mxw, if τ−

M (θ) < σ − Eε < τ−
m (θ),

2A−
Mxw, if τ−

m (θ) ≤ σ − Eε,

and the internal energy by

ρeMxw(ε, σ, θ) = ρC(θ − θT )− αE1ε0θT − E1

2
ε2

0 − E2
1α

2

2(E − E1)
(θ2 − θ2

T )+ 1

2E
σ 2,

+

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

E3
2E(E−E3)

(σ − Eε)2 − αE3θT −b
E−E3

(σ − Eε)+ A+
Mxwθ

2 + B+
Mxw, if σ − Eε ≤ τ+

m (θ),

− E2
2E(E+E2)

(σ − Eε)2 + αE2θT +dθm
E+E2

(σ − Eε)+ D+
Mxwθ

2 + F+
Mxw, if τ+

m (θ) < σ − Eε < τ+
M (θ),

E1
2E(E−E1)

(σ − Eε)2 − E1αθT
E−E1

(σ − Eε), if τ+
M (θ) ≤ σ − Eε ≤ τ−

M (θ),

− E2
2E(E+E2)

(σ − Eε)2 + αE2θT −dθm
E+E2

(σ − Eε)+ D−
Mxwθ

2 + F−
Mxw, if τ−

M (θ) < σ − Eε < τ−
m (θ),

E3
2E(E−E3)

(σ − Eε)2 − αE3θT +b
E−E3

(σ − Eε)+ A−
Mxwθ

2 + B−
Mxw, if τ−

m (θ) ≤ σ − Eε,

(34)

where

D±
Mxw = (E1 + E2)

(
Eα ± M(E − E1)

)2

2(E + E2)(E − E1)
, F±

Mxw = − (E1 + E2)
(
EαθT ± M(E − E1)θm

)2

2(E + E2)(E − E1)
,

A±
Mxw = D±

Mxw − (E3 + E2)
(
Eα ± M(E − E1)∓ (M − m)(E + E2)

)2

2(E + E2)(E − E3)
,

B±
Mxw = F±

Mxw + (E3 + E2)
(
EαθT ± M(E − E1)θm ∓ (M − m)(E + E2)θM

)2

2(E + E2)(E − E3)
.

(35)
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