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Global convergence rate of a standard multigrid

method for variational inequalities

L. Badea∗

Abstract

We introduce a multigrid algorithm for variational inequalities
whose constraints are of the two-obstacle type. This algorithm
is described as a V-cycle multigrid method, its iterations having
an optimal computing complexity, but the results also hold for
other types of iterations, W -cycles, for instance. In the case of the
one-obstacle problems, the algorithm reduces to that introduced
by Mandel in 1984 for complementarity problems and named later
by Kornhuber as standard monotone multigrid method. First,
we introduce the method as a subspace correction algorithm in a
reflexive Banach space, prove its global convergence and estimate
the error making some assumptions. By introducing the finite
element spaces, this algorithm becomes a multilevel or multigrid
method. In this case, we prove that the assumptions we made
in the general theory are satisfied and write the convergence rate
depending on the number of levels. Finally, we compare our results
with the estimations of the asymptotic convergence rate existing
in the literature for complementarity problems.

Keywords: domain decomposition methods, multigrid and multilevel
methods, variational inequalities, nonlinear obstacle problems.
AMS subject classification: 65N55, 65K15, 65N30

1 Introduction

The first globally convergent multigrid method for variational inequal-
ities has been proposed by Mandel in [18], [19] and [8] for complemen-
tarity problems. This method has an optimal computing complexity
of iterations, ie. it is linear with respect to the degrees of freedom of
the problem. It is proved in [18] that the method is globally convergent,
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some generalizations of the method have been given in [8], and in [19], an
upper bound of the asymptotic convergence rate is given for the two-level
method. Related methods have been introduced by Brandt and Cryer
in [6] and Hackbush and Mittelmann in [11]. The method introduced
by Mandel has been studied later by Kornhuber in [13], named stan-
dard multigrid method, and extended to variational inequalities of the
second kind in [14] and [15]. A variant of this method using truncated
nodal basis functions has been introduced by Hoppe and Kornhuber in
[12] and analyzed by Kornhuber and Yserentant in [17]. Also, versions
of this method have been applied to Signorini’s problem in elasticity
by Kornhuber and Krause in [16] and Wohlmuth and Krause in [23].
Evidently, the above list of citations is not exhaustive and, for further
information, we can see the review article [10] written by Gräser and
Kornhuber.

Regarding the convergence study of the method, an asymptotic con-
vergence rate of 1 − 1/(1 + CJ3), J being the number of levels, has
been proved by Kornhuber in [13] for the complementarity problem in
the bidimensional space. For the two-level method, global convergence
rates have been established by Badea, Tai and Wang in [2], and for its
additive variant by Badea in [4]. Also, a global convergence rate has been
estimated by Tai in [20] for a multilevel subset decomposition method.
In [3], we have introduced a projected multilevel method for constrained
minimization problems where the convex set can be more general than
of one- or two-obstacle type, for instance. The main drawback of this
method, is its sub-optimal computing complexity of the iteration steps
because the convex set, which is defined on the finest mesh, is used in
the smoothing steps on the coarse levels.

The multigrid method introduced in the present paper is given for
two-obstacle problems and its iterations have an optimal computing
complexity. It is a standard V-cycle multigrid iteration, but, the pre-
sented results also hold for other types of iterations, W -cycles, for in-
stance. In the case of the one-obstacle problems, the algorithm reduces
to that introduced by Mandel for complementarity problems.

The paper is organized as follows. First, in Section 2, we introduce
the method as a subspace correction algorithm in a reflexive Banach
space, prove its global convergence and estimate the error making some
assumptions. By introducing the finite element spaces, this algorithm
becomes a multilevel or multigrid method. In Section 3 we show that
this algorithm can be viewed as a multilevel method if we associate
finite element spaces to the level meshes and consider decompositions
of the domain at each level. We prove that the assumptions made in
the previous section hold for convex sets of two-obstacle type. If the
decompositions of the domain are made using the supports of the nodal
basis functions we get, in Section 4, the multigrid method and write
its convergence rate depending on the number of levels. We prove, for
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instance, that, in R2, it has a global convergence rate of 1 − 1/(1 +
CJ3), like the asymptotic convergence rate existing in the literature for
complementarity problems.

For the simplicity of presentation, the convergence results of the
multigrid method proposed in this paper are given only for the prob-
lems with the most applications, i.e. the problems in H1. With small
modifications, the proofs presented here can be extended to problems in
W 1,s, 1 < s <∞, (see [5]).

2 Abstract convergence results

We consider a reflexive Banach space V and let K ⊂ V be a nonempty
closed convex set. Let F : V → R be a Gâteaux differentiable func-
tional, which is assumed to be coercive on K, in the sense that F (v) →
∞, as ||v|| → ∞, v ∈ K, if K is not bounded. Also, we assume that
there exist two constants α, β > 0 for which

(2.1)
α||v − u||2 ≤ 〈F ′(v) − F ′(u), v − u〉
and ||F ′(v) − F ′(u)||V ′ ≤ β||v − u||,

for any u, v ∈ V . Above, we have denoted by F ′ the Gâteaux derivative
of F , and V ′ is the dual space of V . It is evident that if (2.1) holds, then

α||v − u||2 ≤ 〈F ′(v) − F ′(u), v − u〉 ≤ β||v − u||2,

for any u, v ∈ V . Following the way in [9], we can prove that

(2.2)
〈F ′(u), v − u〉 + α

2 ||v − u||2 ≤ F (v) − F (u) ≤

〈F ′(u), v − u〉 + β
2 ||v − u||2,

for any u, v ∈ V . We point out that since F is Gâteaux differentiable
and satisfies (2.1), then F is a convex functional (see Proposition 5.5 in
[7], pag. 25).

Now, let us assume that we have J closed subspaces of V , V1, . . . , VJ ,
and let Vji, i = 1, . . . Ij be some closed subspaces of Vj , j = J, . . . , 1.
The subspaces Vj , j = J, . . . , 1, will be associated with the grid levels,
and, for each level j = J, . . . , 1, Vji, i = 1, . . . Ij , will be associated with
a domain decomposition. Let us write I = maxj=J,...,1 Ij .

We consider the variational inequality

(2.3) u ∈ K : 〈F ′(u), v − u〉 ≥ 0, for any v ∈ K,

and since the functional F is convex and differentiable, it is equivalent
with the minimization problem

(2.4) u ∈ K : F (u) ≤ F (v), for any v ∈ K.

3
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We can use, for instance, Proposition 1.2 in [7], page 34, to prove that
problem (2.4) has a unique solution if F has the above properties. In
view of (2.2), if u ∈ K is the solution of problem (2.3), then

(2.5)
α

2
||v − u||2 ≤ F (v) − F (u) for any v ∈ K.

To introduce the algorithm, we make an assumption on choice of the
convex sets Kj , j = 1, . . . , J , where we look for the level corrections.
The chosen level convex sets depend on the current approximation in
the algorithms.

Assumption 2.1. For a given w ∈ K, we recursively introduce the con-
vex sets Kj, j = J, J − 1, . . . , 1, as

- at level J : we assume that 0 ∈ KJ , KJ ⊂ {vJ ∈ VJ : w + vJ ∈ K}
and consider a wJ ∈ KJ ,

- at a level J − 1 ≥ j ≥ 1: we assume that 0 ∈ Kj and Kj ⊂ {vj ∈
Vj : w + wJ + . . .+ wj+1 + vj ∈ K}, and consider a wj ∈ Kj.

We can easily check that if we take, for j = J − 1, . . . , 1,

(2.6) Kj ⊂ {vj ∈ Vj : wj+1 + vj ∈ Kj+1},

then Kj ⊂ {vj ∈ Vj : w + wJ + . . .+ wj+1 + vj ∈ K}.
As we will see in this section, the proposed algorithm is convergent

for any level convex sets Kj having the properties in the above assump-
tion. We can take, like in [3], for instance, the largest convex sets,
Kj = {vj ∈ Vj : w+wJ +. . .+wj−1+vj ∈ K}, j = 1, . . . , J . In this case,
we have to use the definition of K, which lies on the finest level, J , to see
if the elements vj ∈ Vj belong to Kj for the coarse levels j = 1, . . . , J−1.
As we have already said, this leads to a sub-optimal computing com-
plexity of the iterations. If we take KJ = {vJ ∈ VJ : w + vJ ∈ K} and
Kj = {0}, j = J−1, . . . , 1, we get the one-level variant of the algorithm.
In this case, we have a poor convergence. Evidently, a good construction
of these level convex sets would be that in which the definition of K is
not directly utilized in the smoothing steps, but, at the same time, the
algorithm has a good convergence rate. In the case of the finite element
spaces, iteration steps with optimal computing complexity will be ob-
tained when the sets Kj are defined by some properties which should be
verified only to the mesh nodes of the level j. In the next section, for the
two-obstacle convex sets, K = [ϕ,ψ], ϕ,ψ ∈ V , we construct level con-
vex sets having the same form, Kj = [ϕj , ψj ], ϕj , ψj ∈ Vj , j = 1, . . . , J ,
and consequently, the computing complexity of each iteration step is
optimal. Also, as we said in the introduction, the algorithm has a very
good global convergence rate.

We first introduce the algorithm

4
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Algorithm 2.1. We start the algorithm with an arbitrary u0 ∈ K.
Assuming that at iteration n ≥ 0 we have un ∈ K, we successively
perform the following steps:

- at the level J, as in Assumption 2.1, with w = un, we construct the
convex set KJ . Then, we first write wn

J = 0, and, for i = 1, . . . , IJ , we

successively calculate wn+1
Ji ∈ VJi, w

n+ i−1

IJ

J + wn+1
Ji ∈ KJ , the solution of

the inequalities

(2.7) 〈F ′(un + w
n+ i−1

IJ

J + wn+1
Ji ), vJi − wn+1

Ji 〉 ≥ 0,

for any vJi ∈ VJi, w
n+ i−1

IJ

J +vJi ∈ KJ , and write w
n+ i

IJ

J = w
n+ i−1

IJ

J +wn+1
Ji ,

- at a level J − 1 ≥ j ≥ 1, as in Assumption 2.1, we construct the
convex set Kj with w = un and wJ = wn+1

J , . . . , wj+1 = wn+1
j+1 . Then, we

write wn
j = 0, and for i = 1, . . . , Ij, we successively calculate wn+1

ji ∈ Vji,

w
n+ i−1

Ij

j + wn+1
ji ∈ Kj, the solution of the inequalities

(2.8) 〈F ′(un +
J
∑

k=j+1

wn+1
k + w

n+ i−1

Ij

j + wn+1
ji ), vji − wn+1

ji 〉 ≥ 0,

for any vji ∈ Vji, w
n+ i−1

Ij

j +vji ∈ Kj, and write w
n+ i

Ij

j = w
n+ i−1

Ij

J +wn+1
ji ,

- we write un+1 = un +
J
∑

j=1

wn+1
j .

As inequality (2.3), inequalities (2.7) and (2.8) are equivalent with
minimization problems. In order to prove the convergence of the above
algorithm, we shall make two new assumptions.

Classical Cauchy-Schwarz inequality can be strengthened in certain
cases when we use the multilevel decompositions, and it allows us to
get some inequalities whose constants do not depend on the number of
levels J . In this sense we make the following assumption.

Assumption 2.2. 1. There exist some constants 0 < βjk ≤ 1, βjk = βkj,
j, k = J, . . . , 1, such that

(2.9) 〈F ′(v + vji) − F ′(v), vkl〉 ≤ ββjk||vji||||vkl||,

for any v ∈ V , vji ∈ Vji, vkl ∈ Vkl, i = 1, . . . , Ij and l = 1, . . . , Ik.
2. There exists a constant C1 such that

(2.10) ||

J
∑

j=1

Ij
∑

i=1

wji|| ≤ C1(

J
∑

j=1

Ij
∑

i=1

||wji||
2)

1

2 ,

for any wji ∈ Vji, j = J, . . . , 1, i = 1, . . . , Ij.

5
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Evidently, in view of the second equation in (2.1), inequality (2.9) holds
for

(2.11) βjk = 1, j, k = J, . . . , 1.

Also, constant C1 can be taken of the form

(2.12) C1 = (IJ)
1

2 ,

but, as we mentioned above, better estimations are available in the case
of the multigrid decompositions. We also point out that similar inequal-
ities with (2.9) and (2.10) have played an important role in [24] and
[26] where the convergence of the multigrid method in the linear case is
proved by using a spectral theory.

The second new assumption refers to additional properties asked to
the convex sets Kj , j = 1, . . . , J , introduced in Assumption 2.1.

Assumption 2.3. There exists a constant C2 > 0 such that for any
w ∈ K, wji ∈ Vji, wj1 + . . .+ wji ∈ Kj, j = J, . . . , 1, i = 1, . . . , Ij, and
u ∈ K, there exist uji ∈ Vji, j = J, . . . , 1, i = 1, . . . , Ij, which satisfy
(2.13)
uj1 ∈ Kj and wj1 + . . .+ wji−1 + uji ∈ Kj , i = 2, . . . , Ij , j = J, . . . , 1,

(2.14) u− w =
J
∑

j=1

Ij
∑

i=1

uji, and

(2.15)
J
∑

j=1

Ij
∑

i=1

||uji||
2 ≤ C2

2



||u− w||2 +
J
∑

j=1

Ij
∑

i=1

||wji||
2



 .

The convex sets Kj, j = J, . . . , 1, are constructed as in Assumption 2.1

with the above w and wj =

Ij
∑

i=1

wji, j = J, . . . , 1.

An assumption that contains only the conditions (2.13) and (2.14), writ-
ten in another form, has been introduced in [1], to prove the convergence
of the Schwarz algorithm for variational inequalities. Condition (2.15)
is essential in finding the convergence rate. For linear problems it has
a more simple form, which does not contain the corrections wji, and
has been used under similar forms in [24] and [26] (see also, [25]). This
simplified condition is well-known, and concerns the stability of the de-
composition of the space as a sum of subspaces. The assumption in
the above form, containing the three conditions (2.13)-(2.15), has been
introduced in [2] and used to prove the convergence rate of the one- and
two-level methods.

The convergence result is given by

6
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Theorem 2.1. We consider that V is a reflexive Banach space, Vj,
j = 1, . . . , J , are closed subspaces of V , and Vji, i = 1, . . . , Ij, are
closed subspaces of Vj. Also, let K be a non empty closed convex subset
of V , and Kj, j = 1, . . . , J , be non empty closed subsets of Vj given
by Assumption 2.1. We consider a Gâteaux differentiable functional F
on V which is supposed to be coercive if K is not bounded, and which
satisfies (2.1). Also, we assume that Assumptions 2.2 and 2.3 hold. On
these conditions, if u is the solution of problem (2.3) and un, n ≥ 0,
are its approximations obtained from Algorithm 2.1, then the following
error estimations hold:

(2.16) F (un) − F (u) ≤ (
C̃1

C̃1 + 1
)n[F (u0) − F (u)],

(2.17) ||un − u||2 ≤
2

α
(

C̃1

C̃1 + 1
)n[F (u0) − F (u)],

where

(2.18) C̃1 =
1

C2ε

[

1 + C2 + C1C2 +
C2

ε

]

with

(2.19) ε =
α

2βI( max
k=1,··· ,J

J
∑

j=1

βkj)C2

.

Proof. First, from (2.2) and inequalities (2.7) and (2.8) in which we take
vji = 0, we have

α
2 ||w

n+1
ji ||2 ≤ F (un +

J
∑

k=j+1

wn+1
k + w

n+ i−1

Ij

j ) − F (un +
J
∑

k=j+1

wn+1
k + w

n+ i
Ij

j ),

for j = 1, . . . , J , i = 1, . . . , Ij . Therefore, since un+1 = un+
∑J

j=1

∑Ij

i=1w
n+1
ji

for any n ≥ 0, we have

(2.20)
α

2

J
∑

j=1

Ij
∑

i=1

||wn+1
ji ||2 ≤ F (un) − F (un+1).

Now, with u, the solution of problem (2.3), w = un and wji = wn+1
ji ,

j = J, . . . , 1, i = 1, . . . , Ij , we consider the decomposition uji, j =

7
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J, . . . , 1, i = 1, . . . , Ij , of u− un as in Assumption 2.3. In view of (2.2),
(2.7), (2.8) and (2.9), we get

F (un+1) − F (u) +
α

2
||un+1 − u||2 ≤ 〈F ′(un+1), un +

J
∑

j=1

Ij
∑

i=1

wn+1
ji − u〉

=
J
∑

j=1

Ij
∑

i=1

〈−F ′(un +
J
∑

k=1

Ik
∑

l=1

wn+1
kl ), uji − wn+1

ji 〉

≤
J
∑

j=1

Ij
∑

i=1

〈F ′(un +
J
∑

k=j+1

Ik
∑

l=1

wn+1
kl +

i
∑

l=1

wn+1
jl )−

F ′(un +
J
∑

k=1

Ik
∑

l=1

wn+1
kl ), uji − wn+1

ji 〉

≤ β
J
∑

j=1

J
∑

k=1

βkj

Ik
∑

l=1

||wn+1
kl ||

Ij
∑

i=1

||uji − wn+1
ji ||.

Above, we have added and subtracted the missing terms between

F ′(un+
∑J

k=j+1

∑Ik

i=1w
n+1
ki +

∑i
l=1w

n+1
jl ) and F ′(un+

∑J
j=1

∑Ij

i=1w
n+1
ji ).

Consequently, we have,

F (un+1) − F (u) +
α

2
||un+1 − u||2 ≤

βI

J
∑

k=1





J
∑

j=1

βkj(

Ij
∑

i=1

||uji − wn+1
ji ||2)

1

2





(

Ik
∑

l=1

||wn+1
kl ||2

)

1

2

≤

βI





J
∑

k=1





J
∑

j=1

βkj(

Ij
∑

i=1

||uji − wn+1
ji ||2)

1

2





2



1

2 (
J
∑

k=1

Ik
∑

l=1

||wn+1
kl ||2

)

1

2

≤

βI( max
k=1,··· ,J

J
∑

j=1

βkj)





J
∑

j=1

Ij
∑

i=1

||uji − wn+1
ji ||2





1

2




J
∑

j=1

Ij
∑

i=1

||wn+1
ji ||2





1

2

.

We have used above the inequality (see Corollary 4.1 in [21])

(2.21) ||Ax||l2 ≤ (max
i

∑

j

|aij |)||x||l2 ,

where A = (aij)ij is a symmetric matrix. In view of Assumption 2.3 and

8
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(2.10), we have

(
J
∑

j=1

Ij
∑

i=1

||uji − wn+1
ji ||2)

1

2 ≤ (
J
∑

j=1

Ij
∑

i=1

||uji||
2)

1

2 + (
J
∑

j=1

Ij
∑

i=1

||wn+1
ji ||2)

1

2 ≤

C2(||u− un||2 +
J
∑

j=1

Ij
∑

i=1

||wn+1
ji ||2)

1

2 + (
J
∑

j=1

Ij
∑

i=1

||wn+1
ji ||2)

1

2 ≤

C2||u− un|| + (1 + C2)(
J
∑

j=1

Ij
∑

i=1

||wn+1
ji ||2)

1

2 ≤

C2||u− un+1|| + (1 + C2 + C1C2)(

J
∑

j=1

Ij
∑

i=1

||wn+1
ji ||2)

1

2 .

Therefore, we get

F (un+1) − F (u) +
α

2
||un+1 − u||2 ≤ βI( max

k=1,··· ,J

J
∑

j=1

βkj)·



C2||u− un+1||(
J
∑

j=1

Ij
∑

i=1

||wn+1
ji ||2)

1

2 +

(1 + C2 + C1C2)
J
∑

j=1

Ij
∑

i=1

||wn+1
ji ||2



 ≤

βI( max
k=1,··· ,J

J
∑

j=1

βkj)
[

C2ε||u− un+1||2+

(1 + C2 + C1C2 +
C2

ε
)

J
∑

j=1

Ij
∑

i=1

||wn+1
ji ||2



 ,

for any ε > 0. With ε in (2.19), the above equation becomes,

F (un+1) − F (u) ≤
α

2C2ε
(1 + C2 + C1C2 +

C2

ε
)

J
∑

j=1

Ij
∑

i=1

||wn+1
ji ||2.

From this equation and (2.20),

F (un+1) − F (u) ≤
1

C2ε
(1 + C2 + C1C2 +

C2

ε
)
(

F (un) − F (un+1)
)

with ε in (2.19). From the above equation, we easily get equation (2.16)

with C̃1 given in (2.18). Using (2.5), we see that error estimation in
(2.17) can be obtained from (2.16).

9
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3 Multilevel Schwarz methods

We consider a family of regular meshes Thj
of mesh sizes hj , j = 1, . . . , J

over the domain Ω ⊂ Rd. We write Ωj = ∪τ∈Thj
τ and we assume that

Thj+1
is a refinement of Thj

on Ωj , j = 1, . . . , J − 1, and Ω1 ⊂ Ω2 ⊂
. . . ⊂ ΩJ = Ω. Also, we assume that, if a node of Thj

lies on ∂Ωj , then
it lies on ∂Ωj+1, too, that is, it lies on ∂Ω. Besides, we suppose that
distxj+1node of Thj+1

(xj+1,Ωj) ≤ Chj , j = 1, . . . , J − 1. In this section,

C denotes a generic positive constant independent of the mesh sizes,
the number of meshes, as well as of the overlapping parameters and
the number of subdomains in the domain decompositions which will be
considered later. Since the mesh Thj+1

is a refinement of Thj
, we have

hj+1 ≤ hj , and assume that there exists a constant γ, independent of
the number of meshes or their sizes, such that

(3.1) 1 < γ ≤
hj

hj+1
≤ Cγ, j = 1, . . . , J − 1.

At each level j = 1, . . . , J , we consider an overlapping decomposition
{Ωi

j}1≤i≤Ij
of Ω, and assume that the mesh partition Thj

of Ωj supplies

a mesh partition for each Ωi
j , 1 ≤ i ≤ Ij . Also, we assume that the

overlapping size for the domain decomposition at the level 1 ≤ j ≤ J is
δj . Since hj+1 ≤ δj+1, from (3.1), we have

(3.2)
hj

δj+1
≤ Cγ, j = 1, . . . , J − 1.

In addition, we suppose that there exists a constant C such that if ωi
j+1

is a connected component of Ωi
j+1, j = 1, . . . , J − 1, i = 1, . . . , Ij , then

(3.3) diam(ωi
j+1) ≤ Chj .

Finally, we assume that I1 = 1.
At each level j = 1, . . . , J , we introduce the linear finite element

spaces,

(3.4) Vhj
= {v ∈ C(Ω̄j) : v|τ ∈ P1(τ), τ ∈ Thj

, v = 0 on ∂Ωj},

and, for i = 1, . . . , Ij , we write

(3.5) V i
hj

= {v ∈ Vhj
: v = 0 in Ωj\Ω

i
j}.

The functions in Vhj
j = 1, . . . , J−1, will be extended with zero outside

Ωj and the spaces will be considered as subspaces of H1(Ω). We denote
by || · ||0 the norm in L2, and by || · ||1 and | · |1 the norm and seminorm in

10
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H1(Ω), respectively. Since Thj+1
is a refinement of Thj

, j = 1, . . . , J − 1,
we have

Vh1
⊂ Vh2

⊂ . . . ⊂ VhJ

We consider the two sided obstacle problem

(3.6) u ∈ K : 〈F ′(u), v − u〉 ≥ 0, for any v ∈ K,

where

(3.7) K = {v ∈ VhJ
: ϕ ≤ v ≤ ψ},

with ϕ, ψ ∈ VhJ
, ϕ ≤ ψ. We shall prove that Assumptions 2.1 and 2.3

hold for this type of convex set, and explicitly write the constant C2 de-
pending on the mesh and overlapping parameters. We can then conclude
from Theorem 2.1 that if the functional F has the asked properties, then
Algorithm 2.1 is globally convergent.

To get decompositions of the elements in VhJ
which satisfy the corre-

sponding condition (2.15) in Assumption 2.3 in the linear case, Lagrange
interpolation operators are used (see [24] or [26]). In the case of the vari-
ational inequalities, new nonlinear operators are needed to construct the
convex sets Kj as in Assumption 2.1 and the element decomposition in
Assumption 2.3, the so called modified interpolation operators. The uti-
lization of such operators, even if they have not been explicitly defined,
has been proposed in [18] and [19] for the complementarity problem.
The operators we define below have been introduced in [3], but they
have been also used in [2]. These operators allow us to analyse the two-
obstacle problems, and they generalize those introduced in [20] for the
one-obstacle problems.

For j = 1, . . . , J − 1, we define the operators Ihj
: Vhj+1

→ Vhj
as

follows. Let us denote by xji a node of Thj
, by φji the nodal basis func-

tion associated with xji and Thj
, and by ωji the support of φji. Given

a v ∈ Vhj+1
, we write I−jiv = minx∈ωji

v(x)− and I+
jiv = minx∈ωji

v(x)+,

where v(x)− = max(0,−v(x)) and v(x)+ = max(0, v(x)). We notice
that, since v is piecewise linear, I−jiv or I+

jiv are attained at a node

of Thj+1
. Next, we define I−hj

v :=
∑

xjinode of Thj
(I−jiv)φji(x), I

+
hj
v :=

∑

xjinode of Thj
(I+

jiv)φji(x), and write Ihj
v = I+

hj
v − I−hj

v. It is simple to

check that if v(x) = 0 at a point x ∈ Ω, then Ihj
v vanishes in a neigh-

borhood of x, composed by the elements τ of Thj
containing that point.

Also,

(3.8)
0 ≤ Ihj

v(x) ≤ v(x) if v(x) ≥ 0,

0 ≥ Ihj
v(x) ≥ v(x) if v(x) ≤ 0

at any point x ∈ Ω. Consequently, the function

θv(x) =

{

Ihj
v(x)

v(x) if v(x) 6= 0

0 if v(x) = 0

11
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is well defined, continuous and satisfies

(3.9) 0 ≤ θv(x) ≤ 1 for any x ∈ Ω.

Also, for any v, w ∈ Vhj+1
, we have

(3.10) v ≤ w in Ω implies Ihj
v ≤ Ihj

w in Ω.

We shall use these properties of the operator Ihj
in the following. We

also recall the stability properties of the modified interpolation given in
Lemma 4.2 in [3]: for any v ∈ Vhj+1

, we have

(3.11) ||Ihj
v − v||0 ≤ ChjCd(hj , hj+1)|v|1

and

(3.12) ||Ihj
v||0 ≤ ||v||0 and |Ihj

v|1 ≤ CCd(hj , hj+1)|v|1,

where

(3.13) Cd(H,h) =











1 if d = 1

(ln H
h

+ 1)
1

2 if d = 2

(H
h

)
1

2 if d = 3.

It is proved in Lemma 4.2 in [3] that ||Ihj
v||0,σ ≤ C||v||0,σ, but in view

of (3.8), we can take C = 1.
Now, we define the level convex sets Kj ⊂ Vhj

, j = J, . . . , 1, satisfying
Assumption 2.1. Let K be the convex set defined in (3.7), and a given
w ∈ K. For the level J , we define

(3.14)
ϕJ = ϕ− w, ψJ = ψ − w,
KJ = [ϕJ , ψJ ], and consider a wJ ∈ KJ .

At a level j = J − 1, . . . , 1, we define

(3.15)
ϕj = Ihj

(ϕj+1 − wj+1), ψj = Ihj
(ψj+1 − wj+1),

Kj = [ϕj , ψj ], and consider a wj ∈ Kj .

We have

Proposition 3.1. Assumption 2.1 holds for the convex sets Kj, j =
J, . . . , 1, defined in (3.14) and (3.15), for any w ∈ K.

Proof. Evidently, 0 ∈ KJ . Also, in view of (3.8), we recurrently get
that 0 ∈ Kj for j = J − 1, . . . , 1. Form the definition of KJ , we have
w+vJ ∈ K for any vJ ∈ KJ . Finally, we prove (2.6) for j = J−1, . . . , 1.
Let vj ∈ Kj . Using again (3.8), we get

ϕj+1 − wj+1 ≤ Ihj
(ϕj+1 − wj+1) =

ϕj ≤ vj ≤ ψj = Ihj
(ψj+1 − wj+1) ≤ ψj+1 − wj+1,

ie., wj+1 + vj ∈ Kj+1.

12
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Now, in order to prove that Assumption 2.3 holds for the convex sets
defined in (3.14) and (3.15), we consider u, w ∈ K and some wj ∈ Kj ,
j = J, . . . , 1. First, we define

(3.16) vJ = u− w and vj = Ihj
(vj+1 − wj+1) for j = J − 1, . . . , 1,

and then,

(3.17)
uj = vj − vj−1 = vj − Ihj−1

(vj − wj) for j = J, . . . , 2,
u1 = v1 = Ih1

(v2 − w2).

With these notations, we have

Lemma 3.1. If Kj are defined in (3.14) and (3.15), and vj and uj are
defined in (3.16) and (3.17), respectively, then vj , uj ∈ Kj, j = J, . . . , 1,
and

(3.18) u− w =
J
∑

j=1

uj .

Proof. The writing of u−w as in (3.18) is evident from (3.16) and (3.17).
We prove that vj ∈ Kj , j = J, . . . , 1, by induction. First,

ϕJ = ϕ− w ≤ u− w ≤ ψ − w = ψJ ,

and therefore, vJ ∈ KJ . For a j = J − 1, . . . , 1, assuming that vj+1 ∈
Kj+1, from (3.10), we have

ϕj = Ihj
(ϕj+1 − wj+1) ≤ Ihj

(vj+1 − wj+1) ≤ Ihj
(ψj+1 − wj+1) = ψj ,

or vj ∈ Kj . For j = J, . . . , 2, using (3.9), we have

uj = vj − Ihj−1
(vj − wj) = (1 − θvj−wj

)vj + θvj−wj
wj ,

and therefore, uj ∈ Kj .

The stability of the level decomposition (3.17) obtained with the
modified interpolation operators is given by the previous lemma and the
following result.

Lemma 3.2. If uj are defined in (3.17), then

(3.19) |uj |
2
1 ≤ C(J − 1)Cd(hj−1, hJ)2[

J
∑

k=2

|wk|
2
1 + |u− w|21],

13
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for j = J, . . . , 1, where we take h0 = h1 for j = 1, and

(3.20)

||uj ||
2
0 ≤ 2||wj ||

2
0 + C(J − 1)h2

j−1Cd(hj , hJ)2·

[

J
∑

k=2

|wk|
2
1 + |u− w|21], for j = J, . . . , 2, and

||u1||
2
0 ≤ C(J − 1)[||u− w||20 +

J
∑

j=2

||wj ||
2
0].

Proof. With vj in (3.16), we write

vj − wj = −wj + Ihj
(vj+1 − wj+1), j = J − 1, . . . , 1,

and using Lemma 5.1 in [3] for vj − wj , we get

|vj |
2
1 = |Ihj

(vj+1 − wj+1)|
2
1 ≤

C(J − j)[
J−1
∑

k=j+1

Cd(hj , hk)
2|wk|

2
1 + Cd(hj , hJ)2|vJ − wJ |

2
1].

Consequently, we have

(3.21) |vj |
2
1 ≤ C(J − j)Cd(hj , hJ)2(

J
∑

k=j+1

|wk|
2
1 + |u− w|21),

for j = J − 1, . . . , 1. Since uj = vj − vj−1, for j = J − 1, . . . , 2, we get

(3.22) |uj |
2
1 ≤ C(J − j + 1)Cd(hj−1, hJ)2(

J
∑

k=j

|wk|
2
1 + |u− w|21).

Since u1 = v1, we have

(3.23) |u1|
2
1 ≤ C(J − 1)Cd(h1, hJ)2(

J
∑

k=2

|wk|
2
1 + |u− w|21).

Also, from (3.16), (3.17) and (3.12), we have

|uJ |1 = |u− w − IhJ−1
(u− w − wJ)|1 ≤

(1 + CCd(hJ−1, hJ))|u− w|1 + CCd(hJ−1, hJ)|wJ |1,

ie., we have

(3.24) |uJ |
2
1 ≤ CCd(hJ−1, hJ)2(|wJ |

2
1 + |u− w|21).

14
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From (3.22), (3.23) and (3.24), we get (3.19). Now, for j = J, . . . , 2,
from (3.11) and (3.17), we get

||uj ||0 ≤ ||vj − wj − Ihj−1
(vj − wj)||0 + ||wj ||0 ≤

Chj−1Cd(hj−1, hj)|vj − wj |1 + ||wj ||0 ≤
Chj−1(|vj |1 + |wj |1) + ||wj ||0,

where we have used (3.1) and the definition of Cd(H,h), (3.13). From
this equation, we get the first equation in (3.20) for j = J . Also, using
the above equation and (3.21), we get the first equation in (3.20) for
j = J − 1, . . . , 2. For j = 1, from (3.12), we have

||u1||0 = ||Ih1
(v2 − w2)||0 ≤ ||v2 − w2||0 ≤

||Ih2
(v3 − w3)||0 + ||w2||0 ≤ · · · ≤ ||vJ ||0 +

J
∑

j=2

||wj ||0,

ie., the second equation in (3.20) holds.

To prove that Assumption 2.3 holds, we associate to the decomposi-
tion {Ωi

j}1≤i≤Ij
of Ωj , some functions θi

j ∈ C(Ω̄j), θ
i
j |τ ∈ P1(τ) for any

τ ∈ Thj
, i = 1, · · · , Ij , such that

(3.25)
0 ≤ θi

j ≤ 1 on Ωj ,

θi
j = 0 on ∪

Ij

l=i+1 Ωl
j\Ω

i
j and θi

j = 1 on Ωi
j\ ∪

Ij

l=i+1 Ωl
j .

Such functions θi
j with the above properties have been introduced in [1]

and they are constructed using unity partitions of the domains ∪
Ij

l=iΩ
l
j ,

i = 1, . . . , Ij , for each level j = 1, . . . , J . In the linear case, it suffice
to consider, for each fixed level j = 1, . . . , J , the unity partition of Ωj

associated with its domain decomposition. For the existence of such
unity partitions we can also see [22], pag. 57. Since the overlapping
size of the domain decomposition on a level j = J, . . . , 1 is δj , the above
functions θi

j can be chosen to satisfy

(3.26) |∂xk
θi
j | ≤ C/δj , a.e. in Ωj , for any k = 1, . . . , d.

Now, we can prove

Proposition 3.2. Assumption 2.3 holds for the convex sets Kj, j =
J, . . . , 1, defined in (3.14) and (3.15). The constant C2 is given by

(3.27) C2 = CI2(J − 1)
1

2 [
J
∑

j=2

Cd(hj−1, hJ)2]
1

2 .
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Proof. Let us consider u, w ∈ K and wji ∈ V i
hj

such that wj1+. . .+wji ∈

Kj , j = J, . . . , 1, i = 1, . . . , Ij . In the construction of the convex sets Kj ,

we take wj =
∑Ij

i=1wji. Then, from Lemma 3.1, there exist uj ∈ Kj ,
j = J, . . . , 1, defined in (3.17), such that (3.18) holds. Now, for each uj ,
j = J, . . . , 1, we define

(3.28)

uj1 = Lhj
(θ1

juj + (1 − θ1
j )wj1) and

uji = Lhj
(θi

j(uj −
i−1
∑

l=1

ujl) + (1 − θi
j)wji), i = 2, . . . , Ij ,

with θi
j in (3.25), Lhj

being the P1-Lagrangian interpolation. Like in

Proposition 3.1 in [3] (see also [1] or [2]), where we take v = uj and
w = 0, we can prove that

(3.29)

uji ∈ V i
hj
, wj1 + . . .+ wji−1 + uji ∈ Kj , i = 1, . . . , Ij ,

and uj =

Ij
∑

i=1

uji,

for any j = J, . . . , 1. We point out that here, the condition wj1 + . . .+
wji−1 + uji ∈ Kj can be proved by verifying that it is satisfied only
at the nodes of Thj

. From (3.18) and (3.29), we get that the first two
conditions, (2.13) and (2.14), of Assumption 2.3 are satisfied.

We estimate now the constant C2. In view of (3.28), and using (3.26)
and some proprieties of the Lagrange interpolation operator (see [2] or
[3]), we can write (see Proposition 3.2 in [5] for details),

(3.30)

||uji||
2
1 ≤ C

(

|uj |
2
1 + (1 +

Ij − 1

δj
)2||uj ||

2
0+

Ij(1 + (Ij − 1)
hj−1

δj
)2

Ij
∑

k=1

|wjk|
2
1



 .

In view of Lemma 3.2 and (3.2), we have for j = J, . . . , 2,

|uj |
2
1 + (1 +

Ij−1
δj

)2||uj ||
2
0 ≤ C(J − 1)[1 + (Ij − 1)

hj−1

δj
]2Cd(hj−1, hJ)2·

[
J
∑

k=2

|wk|
2
1 + |u− w|21] + C(1 +

Ij − 1

δj
)2||wj ||

2
0 ≤

C(J − 1)I2Cd(hj−1, hJ)2[
J
∑

k=2

|wk|
2
1 + |u− w|21] + C(1 +

Ij − 1

δj
)2||wj ||

2
0.
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Consequently, from (3.30) and the above equation, we have

(3.31)

||uji||
2
1 ≤ C







I3

Ij
∑

k=1

|wjk|
2
1+ I2(J − 1)Cd(hj−1, hJ)2·

[
J
∑

k=2

|wk|
2
1 + |u− w|21] + (1 +

Ij − 1

δj
)2||wj ||

2
0

}

,

for any j = J, . . . , 2 and i = 1, . . . , Ij . At the level j = 1, we do not have
a domain decomposition, I1 = 1, and we take u11 = u1. In this way,
from Lemma 3.2, we have

(3.32) ||u11||
2
1 ≤ C(J − 1)Cd(h1, hJ)2(

J
∑

k=2

||wk||
2
1 + ||u− w||21).

From (3.31) and (3.32), we get

(3.33)

J
∑

j=1

Ij
∑

i=1

||uji||
2
1 ≤ CI3







I
J
∑

j=2

Ij
∑

i=1

|wji|
2
1+

(J − 1)





J
∑

j=2

Cd(hj−1, hJ)2









J
∑

j=2

||wj ||
2
1 + ||u− w||21











+

CI
J
∑

j=2

(1 +
Ij − 1

δj
)2||wj ||

2
0.

The convex sets Kj , j = J, . . . , 1, are constructed in Assumption

2.1 with wj =
∑Ij

i=1wji, j = J, . . . , 1. Consequently, using the classical
Friedrchs-Poicaré inequality, (3.3) and (3.2), we have

J
∑

j=2

[1 +
Ij − 1

δj
]2||wj ||

2
0 ≤ I

J
∑

j=2

[1 +
Ij − 1

δj
]2

Ij
∑

i=1

||wji||
2
0 ≤

CI
J
∑

j=2

[1 +
Ij − 1

δj
]2h2

j−1

Ij
∑

i=1

|wji|
2
1 ≤ CI3

J
∑

j=2

Ij
∑

i=1

|wji|
2
1

From this equation and (3.33), we get that the constant C2 can be
written as in (3.27).

As we see form the above estimations, the convergence rates given in
Theorem 2.1 depend on the functional F , the maximum number of the
subdomains on each level, I, and the number of levels J . The number of
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subdomains on levels can be associated with the number of colors needed
to mark the subdomains such that the subdomains with the same color
do not intersect with each other. Since this number of colors depends
in general on the dimension of the Euclidean space where the domain
lies, we can conclude that our convergence rate essentially depends on
the number of levels J . We now estimate the constants C1 and C2 as
functions of J . To this end, in the remainder of this section, C will
be a generic constant which does not depend on J . Writing Sd(J) =
[

∑J
j=2Cd(hj−1, hJ)2

] 1

2

from (3.1) and (3.13), we get

(3.34) Sd(J) =







(J − 1)
1

2 if d = 1
CJ if d = 2
CJ if d = 3.

In this general framework, we take C1, and βjk, j, k = J, . . . , 1, as in
(2.12) and (2.11) but better estimations of these constants can be given
in the case of the multigrid methods in the next section. From (3.27),
we get

(3.35) C2 = C(J − 1)
1

2Sd(J),

Remark 3.1. 1) The results of this section have referred to problems in
H1 with Dirichlet boundary conditions, and the functions corresponding
to the coarse levels have been extended with zero outside the domains Ωj ,
j = J − 1, . . . , 1. Let us assume that the problem has mixed boundary
conditions: ∂ΩJ = Γd∪Γn, with Dirichlet conditions on Γd and Neumann
conditions on Γn. In this case, if a node of Thj

, j = J − 1, . . . , 1, lies
in Int(Γn), we have to assume that all the sides of the elements τ ∈ Thj

having that node are included in Γn.
2) Similar convergence results with those ones presented in this sec-

tion can be obtained for problems in (H1)d.

4 Multigrid methods

In the above multilevel methods a mesh is the refinement of that on
the previous level, but the domain decompositions are almost indepen-
dent from one level to another. We obtain similar multigrid methods
by decomposing the level domains by the supports of the nodal basis
functions on that level. Consequently, the subspaces V i

hj
, i = 1, . . . , Ij ,

are one-dimensional spaces spanned by the nodal basis functions asso-
ciated with the nodes of Thj

, j = J, . . . , 1. As we already said, in this

case, we prove that the constant C1 in (2.12) and the sums
∑J

k=1 βjk,
j = J, . . . , 1, with βjk in (2.11), can be expressed independently of the
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number J of levels. We point out that multigrid Algorithm 2.1 repre-
sents a classical V-cycle iteration. Evidently, similar results can be given
for the W-cycle multigrid iterations. At the end of this section, we write
the convergence rate of the algorithm depending on the number of the
levels.

The proof of the inequalities in Assumption 2.2 are closed related
with the strengthened Cauchy-Schwarz inequality (see [24] and [26], for
instance). The proof of (2.9) can be found in [21] and it essentially
stands on the simple inequalities

(4.1) ||vji||0,supp(vkl) ≤ C(hk

hj
)

d
2 ||vji||0, |vji|1,supp(vkl) ≤ C(hk

hj
)

d
2 |vji|1,

for any vji ∈ V i
hj

, vkl ∈ V l
hk

with j ≤ k, j, k = J, . . . , 1, i = 1, . . . , Ij and

l = 1, . . . , Ik. Writing γkj = 1

γ|k−j| d
2

, in view of (3.1) and (4.1), we get

(4.2) ||vji||0,supp(vkl) ≤ Cγkj ||vji||0, |vji|1,supp(vkl) ≤ Cγkj |vji|1,

where C is independent of the meshes or their number. In this way, we
get that (2.9) holds for βkj = Cγkj , k, j = J, . . . , 1, and

(4.3)
J
∑

j=1

βkj = C
J
∑

j=1

γkj ≤ C
γ

d
2

γ
d
2 − 1

,

for any k = J, . . . , 1.
Also, there are well-known proofs for inequality (2.10). The proof

we give in the following can be easily generalized for the norm in W 1,s,
1 < s <∞ (see [5]).

Lemma 4.1. Constant C1 in (2.10) can be estimated as C1 =

(

2CI γ
d
2

γ
d
2 −1

) 1

2

,

where C is the constant in (4.2).

Proof. We prove the lemma for the norm || · ||0. The proof for the
derivatives in the seminorm | · |1 is identical. From (4.2), we get

∫

Ω
vjivkl ≤ Cγkj ||vji||0||vkl||0

for any vji ∈ V i
hj

, vkl ∈ V l
hk

with j ≤ k, j, k = J, . . . , 1, i = 1, . . . , Ij and

l = 1, . . . , Ik. Similar inequalities can be written for the derivatives of

19

Page 19 of 23

IMA Journal of Numerical Analysis

IMAJNA - For peer review only - http://mc.manuscriptcentral/imajna

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



vji and vkl. In view of this inequality, (2.21) and (4.3), we get

||
J
∑

j=1

Ij
∑

i=1

wji||
2
0 ≤

∫

Ω





J
∑

j=1

Ij
∑

i=1

|wji|





2

=

J
∑

k2=1

Ik2
∑

i2=1

J
∑

k1=1

Ik1
∑

i1=1

∫

Ω
|wk2i2 ||wk1i1 | ≤

2
J
∑

j2=1

Ij2
∑

i2=1

J
∑

j1=j2

Ij1
∑

i1=1

∫

Ω
|wj2i2 ||wj1i1 | ≤

2C
J
∑

j2=1

Ij2
∑

i2=1

J
∑

j1=j2

Ij1
∑

i1=1

(

γj2j1(

∫

Ω
|wj2i2 |

2)
1

2 (

∫

Ω
|wj1i1 |

2)
1

2

)

≤

2C
J
∑

j2=1





Ij2
∑

i2=1

(

∫

Ω
|wj2i2 |

2)
1

2









J
∑

j1=1

γj2j1

Ij1
∑

i1=1

(

∫

Ω
|wj1i1 |

2)
1

2





2C





J
∑

j2=1





Ij2
∑

i2=1

(

∫

Ω
|wj2i2 |

2)
1

2





2



1

2

·





J
∑

j2=1





J
∑

j1=1

γj2j1

Ij1
∑

i1=1

(

∫

Ω
|wj1i1 |

2)
1

2





2



1

2

≤

2Cmax
j2

J
∑

j1=1

γj2j1





J
∑

j2=1





Ij2
∑

i2=1

(

∫

Ω
|wj2i2 |

2)
1

2





2



1

2

·





J
∑

j1=1





Ij1
∑

i1=1

(

∫

Ω
|wj1i1 |

2)
1

2





2



1

2

≤ 2CI
γ

d
2

γ
d
2 − 1

J
∑

j=1

Ij
∑

i=1

||wji||
2
0.

From the above proofs, we can conclude that, in the case of the
multigrid methods, we can consider C1 and maxk=J,...,1

∑J
j=1 βkj as some

constants independent of J and mesh parameters. Using the estimations
of C2 in (3.35), C̃1 in (2.18), and the error estimation of Algorithm 2.1
in Theorem 2.1, we have

Corollary 4.1. As a function of the number J of levels, the error es-
timate of the multigrid method given by Algorithm 2.1 can be written
as

(4.4) ||un − u||21 ≤ C̃0

(

1 −
1

1 + C̃1(J)

)n

, C̃1(J) = CJSd(J)2
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where Sd(J) is defined in (3.34), and C̃0 is a constant independent of J .

We make now some remarks on the above error estimations. Al-
gorithm 2.1 is a standard monotone multigrid method in the sense of
Kornhuber (see [13] and [10]), whose level obstacles become those pro-
posed by Mandel in [18] in the case of the complementarity problems.
Our analysis refer to the two sided obstacle problems and the above con-
vergence results give a global rate estimation. For d = 3, it is well known
that the convergence rate deteriorates exponentially by increasing J , and
it is confirmed by our error estimate (4.4). In the case d = 2, we can
compare the convergence rates we have obtained for Algorithm 2.1 with
similar ones in the literature. In this case, from (4.4), we get that the
global convergence of Algorithm 2.1 is 1− 1

1+CJ3 . The same estimate, of

1− 1
1+CJ3 , is obtained in [13] for the asymptotic convergence rate of the

standard monotone multigrid methods for the complementarity prob-
lem. In [10], it is mentioned that, for this method, the asymptotic rate
may be of 1 − 1

1+CJ2 , or even of 1 − 1
1+CJ

, under some conditions. The

numerical experiments given in [13] and [10] also confirm our theoretical
results. For the numerical examples given there, the standard monotone
multigrid method has an almost uniform convergence rate during the
iteration, i.e. its global convergence rate coincides with the asymptotic
one.
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