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We investigate two algorithms involving the relaxation of either the given Dirichlet data (boundary
temperatures) or the prescribed Neumann data (normal heat fluxes) on the over-specified boundary in
the case of the alternating iterative algorithm of Kozlov et al. [26] applied to two-dimensional steady-
state heat conduction Cauchy problems, i.e. Cauchy problems for the Laplace equation. The two mixed,
well-posed and direct problems corresponding to each iteration of the numerical procedure are solved
using a meshless method, namely the method of fundamental solutions (MFS), in conjunction with the
Tikhonov regularization method. For each direct problem considered, the optimal value of
the regularization parameter is chosen according to the generalized cross-validation (GCV) criterion.
The iterative MFS algorithms with relaxation are tested for Cauchy problems associated with the
Laplace operator in various two-dimensional geometries to confirm the numerical convergence,
stability, accuracy and computational efficiency of the method.
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1. Introduction

A classical and quite often encountered inverse problem in
heat transfer is the so-called Cauchy problem. For such a problem,
the boundary of the solution domain, the thermal conductivities
and/or the heat sources are all known, while the boundary
conditions are incomplete. More precisely, both Dirichlet
(temperature) and Neumann (normal heat flux) conditions are
prescribed on a part of the boundary, while on the remaining
portion of the boundary no data are available. It is well known
that Cauchy problems are generally ill-posed, see e.g. Hadamard
[17], in the sense that the eXxistence, uniqueness and stability of
their solutions are not always guaranteed. Consequently, a special
treatment of these problems is required.

There are numerous important contributions in the literature,
as well as various approaches, to the theoretical and numerical
solutions of the Cauchy problem associated with the steady-state
heat conduction in isotropic media, i.e. the Laplace equation. The
method of quasi-reversibility, in conjunction with a finite-
difference method (FDM) and Carleman-type estimates, were
employed by Klibanov and Santosa [25] to solve this inverse
problem. Kozlov et al. [26] proposed an alternating iterative
algorithm for the stable solution of this problem, which was
implemented using the boundary element method (BEM) by
Lesnic et al. [28]. Ang et al. [2] reformulated the Cauchy problem
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as an integral equation problem and solved the latter by using the
Fourier transform, together with the Tikhonov regularization
method. Reinhardt et al. [47] proved that the standard five-point
FDM approximation to the Cauchy problem for the Laplace
equation satisfies some stability estimates and hence it turns
out to be a well-posed problem, provided that a certain bounding
requirement is fulfilled. As a result of a variational approach to the
Cauchy problem, the conjugate gradient method, in conjunction
with the BEM, was proposed by Hao and Lesnic [19] in order to
obtain a stable solution. Cheng et al. [6] transformed the original
problem into a moment problem by using Green’s formula and
they also provided an error estimate for the numerical solution.
Hon and Wei [21] converted the Cauchy problem into a classical
moment problem whose numerical approximation can be
achieved and also provided a convergence proof based on
Backus-Gilbert algorithm. Cimetiére et al. [8] reduced the Cauchy
problem for the Laplace equation to solving a sequence of
optimization problems under equality constraints using the finite
element method (FEM). The minimization functional consists of
two terms that measure the gap between the optimal element
and the over-specified data and the gap between the optimal
element and the previous optimal element (regularization term),
respectively. This method was later implemented using the BEM
by Delvare et al. [11]. Cimetiére et al. [9] reduced the solution of
harmonic Cauchy problems to the resolution of a fixed point
process, while the authors implemented numerically the pro-
posed method by employing both the BEM and the FEM.
Jourhmane et al. [24] developed three relaxation procedures in
order to increase the rate of convergence of the algorithm of
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Kozlov et al. [26], at the same time selection criteria for the
variable relaxation factors having been provided. Bourgeois [3]
approached the Cauchy problem for the Laplace equation by the
mixed formulation of the method of quasi-reversibility, which
finally led to a ¢° FEM. Andrieux et al. [1] introduced an energy-
like error functional and converted the inverse problem into an
optimization problem. In order to improve the reconstruction of
the normal derivatives, Delvare and Cimetiére [10] extended the
method originally proposed by Cimetiére et al. [8] to a higher-
order one, which was implemented using the BEM. On assuming
the available data to have a Fourier expansion, Liu [31] applied a
modified indirect Trefftz method to solve the Cauchy problem for
the Laplace equation.

The method of fundamental solutions (MFS) is a simple but
powerful technique that has been used to obtain highly accurate
numerical approximations of solutions to linear partial differen-
tial equations. Like the BEM, the MFS is applicable when a
fundamental solution of the governing PDE is explicitly known.
Since its introduction as a numerical method in the late 1970s by
Mathon and Johnston [42], it has been successfully applied to a
large variety of physical problems, an account of which may be
found in the excellent survey papers by Cho et al. [7], Fairweather
and Karageorghis [13], Fairweather et al. [14] and Golberg and
Chen [15]. The ease of implementation of the MFS and its low
computational cost make it an ideal candidate for inverse
problems as well. For these reasons, the MFS, in conjunction
with various regularization methods (e.g. the Tikhonov regular-
ization method, Morozov’s discrepancy principle, singular value
decomposition), have been used increasingly over the last decade
for the numerical solution of inverse problems. For example, the
Cauchy problem associated with the heat conduction equation
[12,29,35,36,43,48,51-54], linear elasticity [32,39], steady-state
heat conduction in functionally graded materials [33], Helmholtz-
type equations [23,34,37,40], Stokes problems [5], the biharmonic
equation [41] etc. have been successfully addressed by using the
MES.

Recently, Marin [36] solved numerically the Cauchy problem
in steady-state isotropic heat conduction (Laplace equation) by
applying, in an iterative manner, the MFS for the alternating
iterative algorithm of Kozlov et al. [26]. At each iteration, Marin
[36] solved two mixed, well-posed and direct problems using the
MFS, in conjunction with the Tikhonov regularization method. For
each of the aforementioned direct problems, the optimal value of
the regularization parameter was chosen according to the
generalized cross-validation (GCV) criterion. Consequently, an
iterative procedure, which provides the selection of the optimal
regularization parameter, occurs within each step of the iterative
algorithm of Kozlov et al. [26] and hence the computational cost
of the iterative MFS-based algorithm is increased. In order to
overcome this inconvenience, we decided to employ two relaxa-
tion procedures, as proposed by Jourhmane et al. [24], for the
iterative MFS-based algorithm implemented by Marin [36] and
study the influence of the relaxation parameter upon the rate of
convergence of the modified method. The efficiency of these
relaxation procedures is tested for Cauchy problems associated
with the two-dimensional Laplace operator in simply and doubly
connected, convex and concave domains, with smooth or
piecewise smooth boundaries.

2. Mathematical formulation

Consider a bounded Lipschitz domain Q c RY, where d is the
dimension of the space where the problem is posed, usually
d € {1,2,3}, occupied by an isotropic medium. We assume that Q is
bounded by a piecewise smooth curve 622, such that 6Q =11 U I,

where I'1 #0, I'; #0 and I'y n I, =0. Let H'(Q) be the Sobolev
space of real-valued functions in Q2 endowed with the standard
norm, see e.g. Lions and Magenes [30]. We denote by H}(2) and
H}.(2), i=1, 2, the subspaces of functions from H'(£) that vanish
on 62 and I';, i=1, 2, respectively.

The space of traces of functions from H'(Q) to Q2 is denoted by
H'/2(2€2), while the restrictions of the functions belonging to the
space H'/2(6Q) to the subset I'; c 6Q, i=1,2, define the space
HY2(Ty), i=1, 2. The set of real valued functions in #Q with
compact support in I';, i=1, 2, and bounded first-order derivatives
are dense in H'/2(I';), i=1, 2. Furthermore, we also define the
space H(l)éz(l",»), i=1, 2, that consists of functions from H'/2(6Q) and
vanishing on I';_;, i=1, 2. The space H(l,(/)z(l“,-), i=1, 2, is a subspace
of H'/2(6Q) with the norm given by

fx)

12
”f”H(‘)[r;Z(I‘(.) = ( l,mdr(X)_'—/l, I

2
f (X)—f(sg)l dreod F(y)>
[x-yl

(1

It should be mentioned that the space of restrictions from H(]Jéz(ﬂ)
to I, i=1, 2, is dense in HY?(I';), i=1, 2. Nonetheless,
Hééz(F,');éH”Z(F,»). Finally, we denote by (Hééz(ﬂ))* the dual
space of Hy)?(I'y), i=1, 2.

In this paper, we refer to steady-state heat conduction
applications in isotropic homogeneous media in the absence of
heat sources. Consequently, the function u(x) denotes the
temperature at a point Xxe 2 and satisfies the heat balance
equation

d

Vum) = Y 0u®) =0, X=(x1,....X) €, 2)
i=1

where ¢; =0/0x;. We now let n(x) be the unit outward normal

vector at Q2 and q(x) be the normal heat flux at a point x € 6Q
defined by

d
gx)=—-VuXx) -nx)=— Z ou(X)n;(x), XxeoQ. A3

i=1

In the direct problem formulation, the knowledge of the
location, shape and size of the entire boundary of, the
temperature and/or normal heat flux on the entire boundary 692
gives the corresponding Dirichlet, Neumann, Robin, or mixed
boundary conditions which enable us to determine the unknown
boundary conditions, as well as the temperature distribution in
the solution domain. In many engineering problems, a different
and more interesting situation occurs when both the temperature
and the normal heat flux are prescribed on a part of the boundary,
say I'y, while no boundary conditions are supplied on the
remaining part of the boundary I', =0Q\I'1. More precisely, we
consider the following Cauchy problem for steady-state heat
conduction in an isotropic homogeneous medium:

V2ux)=0, xeQ, (4a)
U(X) = ﬁ(x)v Xe F] ’ (4b)
qx)=q4x), xely, (40)

where it e H/2(I'y)and § € (H(l](/)2 (I'1))* are prescribed Dirichlet and

Neumann boundary conditions, respectively.

A necessary condition for the Cauchy problem given by Eqs.
(4a)-(4c) to be identifiable is that meas(I'1) > 0, see Isakov [22].
However, in the discretised version of the aforementioned Cauchy
problem, the corresponding identifiability condition reduces to
meas(I'1) > meas(I';), see, e.g. Lesnic et al. [28]. This inverse
problem is much more difficult to solve both analytically and
numerically than the direct problem, since the solution does not
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satisfy the general conditions of well-posedness. Although the
problem may have a unique solution, it is well known that
this solution is unstable with respect to small perturbations into
the data on I'1, see Hadamard [17]. Thus the problem is ill-posed
and, therefore, regularization methods are required in order to
solve accurately the inverse problem (4a)-(4c) for the Laplace
equation.

3. Alternating iterative algorithms with relaxation

In this section, we present two alternating iterative algorithms
with relaxation, as proposed by Jourhmane et al. [24], which aim
to reduce the computational time of the alternating iterative
algorithm introduced by Kozlov et al. [26] for the simultaneous
and stable reconstruction of both the unknown temperature u|r,
and the normal heat flux q|,.

Alternating iterative algorithm with relaxation I:

Step 1: (i) If k=1 then specify an initial guess for the normal
heat flux on I', namely g1 ¢ (Hééz(Fz))*.

(ii) If k > 2 then solve the following mixed, well-posed, direct
problem:

Vu-Dxy=0, xeQ, (5a)
g V) =qx), xely, (5b)
u@-N(x) =uC-2(x), xel, (5¢)

to determine u®*~1(x), xe @, and ¢Z-D(x) = — Vu@-(x) . n(x),
Xe Fz.
Step 2: Update the unknown Neumann data on I'; by setting

® qZ-N(x) fork=1,
X) =
S ® ¢VX) +(1-w)E* Vx) for k=2,
where w € (0,2) is a fixed relaxation factor.

Having constructed the approximation u®*~Y, k>1, the
following mixed, well-posed, direct problem:

xXel’, (6)

Viuhxy=0, xeQ, (7a)
U x)=1i(x), xeln, (7b)
@) =P x), xel, (7¢)

is solved in order to determine u®¥(x), x € Q, and u®*(x), x e I'>.
Step 3: Repeat steps 1 and 2 until a prescribed stopping
criterion is satisfied.

Remark 3.1. The value w=1 in Eq. (6) corresponds to the
alternating iterative algorithm introduced by Kozlov et al. [26]
with an initial guess for the Neumann data, while the values
we(0,1) and we(1,2) in Eq. (6) correspond to the alternating
iterative algorithm introduced by Kozlov et al. [26] with an initial
guess for the Neumann data and a constant under- and over-
relaxation factor, respectively.

Alternating iterative algorithm with relaxation II:

Step 1: (i) If k=1 then specify an initial guess for the boundary
temperature on I', namely u®k-"Y ¢ H'/2(Iy).

(ii) If k > 2 then solve the following mixed, well-posed, direct
problem:

V2uC-D(x) =0, xeQ, (8a)
UV =1i(x), xely, (8b)
q(2k—l)(x) — q(ZR—Z)(x), xel (SC)

to determine u®*~1(x), x e @, and u®*~V(x), x e I',.

Step 2: Update the unknown Dirichlet data on I'; by setting

WWm={

uk=1(x) fork=1,

ou®*-Dx)+(1-w) n*Hx) for k=2, xel, ©)

where w € (0,2) is a fixed relaxation factor.
Having constructed the approximation u®*~Y k>1, the
following mixed, well-posed, direct problem:

Viu@hx)=0, xe, (10a)
@ =4, xelH, (10b)
U =n®Pm), xel (10c)
is solved in order to determine u®¥(x), xe®, and

g0 x) = —Vu@h(x) - n(x), x e I'y.
Step 3: Repeat steps 1 and 2 until a prescribed stopping
criterion is satisfied.

Remark 3.2. The value w=1 in Eq. (9) corresponds to the
alternating iterative algorithm introduced by Kozlov et al. [26]
with an initial guess for the Dirichlet data, while the values
we(0,1) and we(1,2) in Eq. (9) correspond to the alternating
iterative algorithm introduced by Kozlov et al. [26] with an initial
guess for the Dirichlet data and a constant under- and over-
relaxation factor, respectively.

The convergence of the alternating iterative algorithm with
relaxation II presented above can be recast in the following
convergence theorem, with the mention that a similar result can
also be obtained for the alternating iterative algorithm with
relaxation I:

Theorem 3.1. Letiie H/>(I'y) and § (Hé(/,z(l"l))*, and assume that
the Cauchy problem (4a)-(4c) has a solution u e H'(Q). Let u™® be the
k-th approximate solution in the alternating procedure 11 described
above. Then there exists a number 1 <b <2 such that when the
relaxation parameter « is chosen with 1 < w < b, then

lim lu—u® iy =0 (11)

k— oo
for any initial data element n™ e H'/2(I").

The proof for this theorem in the case of the proposed
relaxation algorithms associated with the Cauchy problem for
the Laplace equation is similar to that for the corresponding
relaxation algorithms for the Cauchy problem in elasticity, see
Marin and Johansson [38]. The proof given by Marin and
Johansson [38] is based on the reformulation of the Cauchy
problem (4a)-(4c) as a fixed point operator equation with a self-
adjoint, injective, positive definite and non-expansive operator,
while the scheme is shown to be a fixed point iteration for that
equation. An alternative proof for the convergence result can also
be found in Jourhmane et al. [24]. As reported by Marin and
Johansson [38] for Cauchy problems associated with the Navier-
Lamé system of elasticity, it was also found for two-dimensional
steady-state isotropic heat conduction Cauchy problems that a
relaxation factor @ >2 cannot be employed since the iterative
process becomes divergent in such a situation.

It is important to mention that, in general, the iterative
algorithms described above do not converge if the mixed
problems in the steps 1 and 2 of the algorithms are replaced by
Dirichlet or Neumann problems. In addition, the Neumann direct
problem associated with the Laplace equation is ill-posed owing
to the non-uniqueness or non-existence of solution with respect
to whether the integral of the normal heat flux g over the
boundary oQ2 vanishes or not, respectively.
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4. Method of fundamental solutions

The fundamental solution G of the heat balance equation (2)

r (4a) for two-dimensional steady-state heat conduction in

isotropic homogeneous media, i.e. the Laplace equation, is given
by [13]

1

1
Gx.8) = 5 log "o

Tk XxeQ, EecRAMQ, (12)

where £ is a singularity or source point. The main idea of the MFS
consists of approximating the temperature in the solution domain
by a linear combination of fundamental solutions with respect to
M singularities &”, j=1,...,M, in the form

M .
u) ~up(CEX) = > GGx.EY), xeQ, (13)

j=1

where c¢=[cq,...,cy]" and &e [REZM is a vector containing the
coordinates of the singularities ¢&¥, j=1, ..., M. On taking into
account the definitions of the normal heat flux (3) and the
fundamental solution for the two-dimensional Laplace equation
(12) then the normal heat flux, through a curve defined by
the outward unit normal vector n(x), can be approximated on the
boundary Q2 by

M A
aX ~qu(c.&x =Y gH®ED), xeoQ, (14)
j=1

where

1 x=9) nx)

-
o Hx—é\lz , Xeodf, EeRN\Q.

H(X, é) = _VXG(X- C)n(x) =
(15)

Next, we select the N; MFS collocation points {x‘“}?":] on the
boundary I'y and the N, MFS collocation points {x(i)}:.\’;}':’il on
the boundary I';, such that the total number of MFS collocation
points used to discretize the boundary 62 of the solution domain
Qis given by N = N; + N,.

According to the MFS approximations (13) and (14), the
discretized versions of the boundary value problems (5a)-(5c)

and (7a)-(7c), or (8a)-(8c) and (10a) and (10c) recast as
AD@k=D — pCk=D s 1, (16)
and

AP —p® k=1, 17)

respectively. For example, in the case of the alternating iterative
algorithm with relaxation I, the components of the MFS matrices
and right-hand side vectors corresponding to Egs. (16) and (17)
are given by

@ JHEOED, i=1,...Ny, j=1,...M, (18a)
= X . a
y GxD,&"), i=Ny+1,...,Ny+Na, j=1,....M,
a(x® i=1.....N
k-1 _ ) 4x?), i=1,...,Ny,
bi _{u(ZkZ)(x(i))’ i=N;+1,...,N;+No, (18b)
and
qo_ [ COOEN, =1 N =1, M, 193)
o = . . a
y Hx®,&0), i=Ny+1,...,Ni+No, j=1,...,M,
ﬂ(x(i))‘ i=1,...,Ny,
b =1 @y i (19b)
EVxD), i=Ni+1,...,Ni+Ny,

respectively. Similar expressions are obtained in the case of the
alternating iterative algorithm with relaxation II, and therefore
they are not presented.

Each of Egs. (16) and (17) represents a system of N
linear algebraic equations with M unknowns, namely the MFS
coefficients ¢~ = [V DT and ¢@h = [c¢@9), .. ,c20yT,
respectively. It should be noted that in order to uniquely
determine the solutions ¢ ¢ RM and ¢@Y ¢ RV to the systems
of linear algebraic equations (16) and (17), respectively, the
number N of MFS boundary collocation points on the boundary 62
and the number M of singularities must satisfy the inequality
M < N. However, the systems of linear algebraic equations (16)
and (17) cannot be solved by direct methods, such as the least-
squares method, since such an approach would produce a highly
unstable solution in the case of noisy Cauchy data on I';.

In order to implement the MFS, the location of the singularities
has to be determined and this is usually achieved by considering
either the static or the dynamic approach. In the static approach,
the singularities are pre-assigned and kept fixed throughout the
solution process, whilst in the dynamic approach, the singularities
and the unknown coefficients are determined simultaneously
during the solution process, see Fairweather and Karageorghis
[13]. Thus the dynamic approach transforms the inverse problem
into a more difficult nonlinear ill-posed problem which is also
computationally much more expensive. The advantages and
disadvantages of the MFS with respect to the location of the
fictitious sources are described at length in Heise [20] and Burgess
and Maharejin [4]. Recently, Gorzelahczyk and Kotodziej [16]
thoroughly investigated the performance of the MFS with respect
to the shape of the pseudo-boundary on which the source points
are situated, proving that, for the same number of boundary
collocation points and sources, more accurate results are obtained
if the shape of the pseudo-boundary is similar to that of the
boundary of the solution domain. Therefore, we have decided to
employ the static approach in our computations, at the same time
accounting for the findings of Gorzelanczyk and Kotodziej [16].

5. Regularization

Since the right-hand sides of the systems of linear algebraic
equations (16) and (17) are in general polluted by noise, the
retrieval of accurate and stable solutions to Eqs. (16) and (17) is
very important for obtaining physically meaningful numerical
results. For perturbed right-hand sides in Eqgs. (16) and (17), the
direct inversion of these equations or, equivalently, a least-
squares minimization applied to Eqgs. (16) and (17) will fail to
produce stable, accurate and physically meaningful numerical
solutions. It is the purpose of this section to present a classical
regularization procedure for obtaining such solutions to the
systems of linear algebraic equations (16) and (17), as well as
details regarding the optimal choice of the regularization
parameter.

5.1. Tikhonov regularization method

Several regularization techniques used for the stable solution
of systems of linear and nonlinear algebraic equations are
available in the literature, such as the singular value decomposi-
tion [18], the Tikhonov regularization method [49] and various
iterative methods [27]. In this study, we have decided to employ
the Tikhonov regularization method.

Consider the following system of linear algebraic equations:

Ac=b, (20)
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where N> M, Ae RV*M ¢ e R and b € RM. Note that Eq. (20) may
describe each of the MFS systems of linear equations (16) and
(17), provided that

A=AD, c=c®D p=p*D [>1, 1)
and
A=A®, c=c? b=b%® k>1, (22)

respectively. The Tikhonov zeroth-order regularized solution to
the generically written system of linear algebraic equations (20) is
sought as, see Tikhonov and Arsenin [49]

c,eRM: 7,c;)= mgnlﬂ}](c), (23)
Ce

where F, represents the Tikhonov zeroth-order regularization
functional given by, see Tikhonov and Arsenin [49]

Fi(): RM—[0,00), F;(c)=lIAc—bl?+ A%llclI?, (24)

and A>0 is the regularization parameter to be prescribed.
Formally, the Tikhonov regularized solution ¢, of the problem
(20) is given as the solution of the normal equation

(ATA+22Ty)c=A"b, (25)
where Iy e RMM is the identity matrix, namely
c;=A'b, AT=ATA+/%1,) AT (26)

To summarize, the Tikhonov regularization method solves a
constrained minimization problem using a smoothness norm in
order to provide a stable solution which fits the data and also has
a minimum structure.

5.2. Selection of the optimal regularization parameter

The performance of regularization methods depends crucially
on the suitable choice of the regularization parameter. One
extensively studied criterion is the discrepancy principle, see
e.g. Morozov [45]. Although this criterion is mathematically
rigorous, it requires a reliable estimation of the amount of noise
added into the data which may not be available in practical
problems. Heuristic approaches are preferable in the case when
no a priori information about the noise is available. For the
Tikhonov zeroth-order regularization method, several heuristic
approaches have been proposed, including the L-curve criterion,
see Hansen [18], and the generalized cross-validation (GCV), see
Wahba [50]. In this paper, we employ the GCV criterion to
determine the optimal regularization parameter, Aoy, for the
Tikhonov zeroth-order regularization method, namely

Aopt © Glhopt) = I/]EI(}Q(/L) 27)

Here

IAc,—b®II12

G(+) : (0,00)—[0,00), m ,

GGy = 28)

where c¢; is given by Eq. (26) with b =b®.

6. Numerical results and discussion

In this section, we present the performance of the proposed
numerical method, namely the alternating iterative MFS
described in Sections 3 and 4. To do so, we solve numerically
the Cauchy problem given by Eqs. (4a)-(4c) for the two-
dimensional Laplace equation in the geometries described below,
see also Figs. 1(a)-(d).

6.1. Examples

Example 1 (Simply connected convex domain with a smooth
boundary, see Fig. 1(a)). We consider the following analytical
solution for the temperature

uAX) =x2—x3, xX=(x1,%) € Q, (29a)
and the corresponding analytical normal heat flux
gV X) = 2[x N1 (X)X (X)], X = (X1,X) € 0L, (29b)

in the unit disc Q = {X = (X1,X2)|p(X) <}, where p(X) = ,/x3 +x3 is
the radial polar coordinate of x and r=1.0. Here I'y=
{(xeoR0<0(x)<3n/2} and I,={xedQ|3n/2<0X)<2r},
where 60(x) is the angular polar coordinate of x.

Example 2 (Simply connected convex domain with a piecewise
smooth boundary, see Fig. 1(b)). We consider the following
analytical solutions for the temperature and the normal heat flux

u@M(x) = cos(x1)cosh(xy) +sin(x;)sinh(x2), X=(x1,x)eQ, (30a)

and

@V (X) = [—sin(x;)cosh(x,) + cos(x;)sinh(x)]n; (X)
+[cos(x1)sinh(xz)+sin(x;)cosh(x2)n2(X), X = (x1,X2) € 022,
(30b)

respectively, in the rectangle Q= (—r,r) x (-r/2,r/2), where r=
1.0. Here I'y ={r} x (—r/2,r/2)U[-1,1] x {+1/2} and [ ={-r1}
x(—=r/2,1/2).

Example 3 (Simply connected concave domain with a smooth
boundary, see Fig. 1(c)). We consider the following analytical
solutions for the temperature and the normal heat flux

U (X) =X1X2, X=(X1,%) € Q, (31a)
and
qOVX) = X111 (X)+X1Ma(X), X =(X1,X2) € 0Q, (31b)

respectively, in
0 €10,2m)}.

the epitrochoid Q= {x=(x1,X2)|p(X) < r(0),

Here r(0) = \/(a+b)2—2h(a+b)cos(a9/b)+h2, wherea = 1.0, b
= 0.25 and h = 0.125, while I'1 = {x € 6Q|p(x) =1(0),0 € [0,37/2]}
and I' = {x € 3Q2|p(X) = 1(0),0 € 31/2,21)}.

Example 4 (Doubly connected concave domain with a smooth
boundary, see Fig. 1(d)). We consider the same analytical solutions
for the temperature and the normal heat flux as those corre-
sponding to Example 3 in the annular domain Q={x=
(X1,%2)|Tine < P(X) <Tout}), Where ripe=2.0 and ro=3.0. Here
I'1 = {X e 0Q|p(X) = Tout} and I'; = (X € IQ|P(X) = Tint}-

The inverse problems investigated in this paper have been
solved using the uniform distribution of both the MFS
boundary collocation points x”, i = 1, ..., N, and the singularities
g9 j = 1, ..., M. Furthermore, the numbers of boundary
collocation points N; and N, corresponding to the over-
and under-specified boundaries I'y and I',, respectively, as well
as the distance ds between the physical boundary 62 and the
pseudo-boundary 6€2s on which the singularities are situated,
were set to:

(i) Ny=60, N,=20 and ds=3.0 for Example 1;
(ii) Ny = 97, N, = 19 and ds = 2.0 in the case of Example 2;
(iii) Ny=60, N,=20 and ds=4.0 in the case of Example 3; and
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Fig. 1. Schematic diagram of the domain, Q, over-determined boundary, I'y (-, -, -, in red), under-determined boundary, I'; (-, -, -, in blue), and pseudo-boundary,
0Qs (-, -, =), for the inverse problems investigated, namely (a) Example 1 (disc), (b) Example 2 (rectangle), (c) Example 3 (epitrochoid), and (d) Example 4 (annulus),

respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

(iv) Ny=60 and N,=40, while ds=1.0 and ds=3.0 for the inner
and outer boundaries, respectively, for Example 4.

For all examples analysed herein the number of singularities was
taken to be equal to that of the MFS boundary collocation points, i.e.
M=N=N;+N,. Although not presented herein, it is reported that the
numerical results obtained for the unknown temperature and normal
heat flux on the boundary I', are convergent with respect to
increasing the distance ds between the physical boundary 62 and the
pseudo-boundary 692s. However, it should be noted that the value ds
= 1.0 was found to be sulfficiently large such that any further increase
of the distance between the singularities and the boundary of the
solution domain did not significantly improve the accuracy of the
numerical solutions for the examples tested in this paper.

It is also important to mention that for the inverse problems
investigated in this paper, as well as the alternating iterative
algorithms I and II, the initial guesses g’ and u(*) for the normal
heat flux and temperature, respectively, were taken to be

qPx)=0, xely, (32a)
and
uVx) =0, xels, (32b)

respectively. Moreover, all numerical computations have been
performed in FORTRAN 90 in double precision on a 3.00 GHz Intel
Pentium 4 machine.

6.2. Results obtained with exact data: convergence of the algorithms

If N; MFS collocation points, {x‘”}’;’f:], are considered on the
boundary I'; c 6Q then the root mean square error (RMS error)
associated with the real valued function f(-): I'’—R on I is
defined by

RMS;, (f) = 33)

In order to investigate the convergence of the algorithm, at each
iteration, k>1, we evaluate the following accuracy errors
corresponding to the temperature and normal heat flux on the
under-specified boundary, I';, which are defined as relative RMS
errors, i.e.

RMS -, (u@k=1D —y@m)

for the alternating iterative
RMS , (u@m) J

" algorithm with relaxation I,
eu(k) =

RMS -, (u@0—y@m o
% for the alternating iterative

algorithm with relaxation II,
(34a)
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and

RMS, (¢ —q@™) o
RMS, (@) for the alternating iterative

algorithm with relaxation I,
eq(k) = RMS, (g2 —q@m)

RMSr, (q@m)

for the alternating iterative

algorithm with relaxation II.
(34b)

Here u®=1D 420y and ¢20 (g%~ 1)) are the temperature and
normal heat flux on the boundary I'; retrieved after k iterations
using the alternating iterative algorithm with relaxation I (II),
respectively, with the mention that each iteration consists of
solving two direct well-posed mixed boundary value problems,
namely Egs. (5a)-(5¢) and (7a)-(7c) for the alternating iterative
algorithm with relaxation I (Egs. (8a)-(8c) and (10a)-(10c) for the
alternating iterative algorithm with relaxation II).

Figs. 2(a) and (b) show, on a logarithmic scale, the accuracy
errors e, and ey, as functions of the number of iterations,
k, obtained using the alternating iterative algorithm I, exact
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Fig. 2. The accuracy errors (a) ey, and (b) eq, as functions of the number of
iterations, k, obtained using the alternating iterative algorithm with relaxation I,
exact Cauchy data on I'y and various values of the relaxation parameter, namely
w €{0.10,0.50,1.00,1.50,1.90}, for Example 1.

Cauchy data and various values of the relaxation parameter w, in
the case of Example 1. It can be seen from these figures that, for all
values of the relaxation parameter used in this paper, both errors
e, and eq keep decreasing until a specific number of iterations,
after which the convergence rate of the aforementioned accuracy
errors becomes very slow so that they reach a plateau. As
expected, for each value of the relaxation parameter employed,
eu(k) < eq(k) for all k> 1, i.e. temperatures are more accurate than
normal heat fluxes; also, the larger the parameter w, the lower the
number of iterations and, consequently, computational time are
required for obtaining accurate numerical results for both the
temperature and the normal heat flux on I',. Therefore, choosing
w € (1,2) in the alternating iterative algorithms I and II results in a
significant reduction of the number of iterations as compared
with the corresponding original alternating iterative algorithms
proposed by Kozlov et al. [26], i.e. for & = 1. Furthermore, it can
also be noticed from Figs. 2(a) and (b) that, for exact Cauchy data
on I'q, the errors in the numerical temperature and normal heat
flux retrieved on I', are also decreasing as w—2, see e.g. the
results obtained for w=1.90, while both errors e, and eq
corresponding to the numerical solutions for the temperature
and normal heat flux on I',, obtained using values of the
relaxation factor that are not in the vicinity of its maximum
admissible value, have almost the same order of magnitude, see
e.g. the results obtained for w € {0.10,0.50,1.00,1.50}.

The same conclusions can be drawn from Figs. 3(a) and (b),
which illustrate the analytical and numerical temperature and
normal heat flux, respectively, obtained with w=1.90 after
k=1000 iterations. From Figs. 2 and 3, it can be concluded that
the alternating iterative algorithm with relaxation I described in
Section 3 provides excellent approximations for the unknown
Dirichlet and Neumann data on I', and is convergent with respect
to increasing the number of iterations, k, if exact Cauchy data
are prescribed on the over-specified boundary I';. Although
not presented, it is reported that similar results have been
obtained for Examples 2-4 and all admissible values of the
relaxation parameter, as well as the alternating iterative algo-
rithm with relaxation II applied to all examples investigated in
this study.

6.3. Regularizing stopping criterion

Once the convergence of the numerical solution to the exact
solution, with respect to number of iterations performed, k, has been
established, we investigate the stability of the numerical solution for
the examples considered. In what follows, the temperature,
ulp, =u@| , and/or the normal heat flux, q|;, =q®"|r,, on the
over-specified boundary have been perturbed as

#®|p, =ulp, +0u, O6u=c0oSpDF(0,0y), Ou= mr?x|u| x (pu/100),
(35)

and

4°Ir, =qlr, +9q, 0q=G05DDF(0,04), Gq= max|q| x (pq/100),
(36)

respectively. Here du and Jq are Gaussian random variables with
mean zero and standard deviations ¢, and o4, respectively,
generated by the NAG subroutine Go5DDF [46], while p% and pq%
are the percentages of additive noise included into the input
boundary temperature, u|r,, and normal heat flux, q|, , respectively,
in order to simulate the inherent measurement errors.

The evolution of the accuracy errors, e, and eq, as functions of
the number of iterations, k, obtained using the alternating
iterative algorithm I, p;=>5% noise added into the Neumann data
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Fig. 3. The analytical and numerical (a) temperatures u, and (b) normal heat fluxes
g, on the under-specified boundary I',, obtained using the alternating iterative
algorithm I, exact Cauchy data on I'y, w=1.90 and k=1000 iterations, for
Example 1.

on I'y and various values of the relaxation parameter, w, for
Example 1, are displayed, on a logarithmic scale, in Figs. 4(a) and
(b), respectively. From these figures it can be noted that the
number of iterations required for both errors e, and eq to attain
their corresponding minimum values (i.e. to obtain the optimal
numerical solution to the Cauchy problem) decreases with respect
to increasing the value of the relaxation parameter, w. Similar to
the case of exact Cauchy data on I'y, both e, and e, are slightly
decreasing as w—2, see e.g. the results obtained for w =1.80,
while the inaccuracies in the numerical solutions for both the
temperature and normal heat flux on the boundary I'y, obtained
using values of the relaxation parameters that are not close to its
maximum admissible value, have almost the same order of
magnitude.

Figs. 5(a) and (b) present, on a logarithmic scale, the accuracy
errors e, and eq, respectively, as functions of the number of
iterations, k, obtained using the alternating iterative algorithm I,
w=150 and various levels of Gaussian random noise
pu € {1%,5%,10%)} added into the temperature data u|r,, for the
Cauchy problem given by Example 4. From these figures it can be
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Fig. 4. The accuracy errors (a) ey, and (b) eq, as functions of the number of
iterations, k, obtained using the alternating iterative algorithm I, p;=>5% noise
added into the Neumann data on I'; and various values of the relaxation
parameter, @, namely w e {0.20,0.50,1.00,1.50,1.80}, for Example 1.

seen that, for each fixed value of p,, the errors in predicting the
temperature and normal heat flux on the under-specified
boundary I'; decrease up to a certain iteration number and after
that they start increasing. If the iterative process is continued
beyond this point then the numerical solutions lose their
smoothness and become highly oscillatory and unbounded, i.e.
unstable. Therefore, a regularizing stopping criterion must be
used in order to cease the iterative process at the point where the
errors in the numerical solutions start increasing.

To define the stopping criterion required for regularizing/
stabilizing the iterative methods analysed in this paper, after each
iteration, k, we evaluate the following convergence error which is
associated with the temperature on the over-specified boundary,
I'y, namely

RMS/, (u®*-D—ii#)/RMSy, (@1¥)  for the alternating iterative
algorithm with relaxation I,
for the alternating iterative
algorithm with relaxation II.

(37

EIO=1 RS, @@ —ii%) RMS - @)



L. Marin / Engineering Analysis with Boundary Elements 35 (2011) 415-429 423

a
1.0
0.5 1
¢ 01
<]
s 0.05 A
>
[&]
®
5
3
£ 0.01
0005 T pu = 1%)
— pu=5%
— py=10%
0.001 T T T T T
1 5 10 50 100 500 1000
Number of iterations, k
b
1.0
0.6
0.3 1
OJO-
S
) i
e 0.1
®
5 0.06
3
<
0.03 -
— py=1%
—— py=5%
001 — Py=10%
1 5 10 50 100 500 1000

Number of iterations, k

Fig. 5. The accuracy errors (a) e, and (b) eq, as functions of the number of
iterations, k, obtained using the alternating iterative algorithm I, @ =1.50 and
various levels of noise added into the Dirichlet data on Iy, namely
Pu € {1%,5%,10%}, for Example 4.
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Fig. 6. The convergence error, E, as a function of the number of iterations, obtained
using the alternating iterative algorithm I, @ =1.50 and various levels of noise
added into the Dirichlet data on I'y, namely p, € {1%,5%,10%}, for Example 4.

Here u®*~1 (u®¥) is the temperature on the boundary I'j,
retrieved numerically after k iterations by solving the well-posed
mixed direct boundary value problem (5a)-(5c) [(10a)-(10c)], in
the case of the alternating iterative algorithm I (II), while ii® is the
perturbed Dirichlet data (boundary temperature) on the over-
specified boundary I'1, as given by Eq. (35). This error E should
tend to zero as the sequences {u®*V}, . and {(u®¥},.; tend to
the analytical solution, u®®®, in the space H!(Q) and hence it is
expected to provide an appropriate stopping criterion. Indeed, if we
investigate the error E obtained at each iteration for Example 4,
using the alternating iterative algorithm I, & =1.50 and various
levels of Gaussian random noise py € {1%,5%,10%)} added into the
temperature data u|r,, we obtain the curves graphically repre-
sented in Fig. 6. By comparing Figs. 5 and 6, it can be noticed that
the convergence error E, as well as the accuracy errors e, and eq,
attain their corresponding minimum at around the same number
of iterations. Therefore, for noisy Cauchy data a natural stopping
criterion ceases the MFS alternating iterative algorithms with
relaxation [ and II at the optimal number of iterations, kop, given by

kopt :  E(kopt) = {nirllE(k). (38)
K>

Although not illustrated, it is important to mention that similar
results and conclusions have been obtained for the other examples
considered and w € (0,2).

As mentioned in the previous section, for exact data the
iterative process is convergent with respect to increasing
the number of iterations, k, since the accuracy errors e, and eq
keep decreasing even after a large number of iterations, see e.g.
Fig. 2 corresponding to Example 1. It should be noted in this case
that a stopping criterion is not necessary since the numerical
solution is convergent with respect to increasing the number of
iterations. However, even in this case the errors E, e, and eq have a
similar behaviour and the error E may be used to stop the iterative
process at the point where the rate of convergence is very small
and no substantial improvement in the numerical solution is
obtained even if the iterative process is continued. Therefore, it
can be concluded that the regularizing stopping criterion (38)
proposed for the alternating iterative algorithms with relaxation I
and Il is very efficient in locating the point where the errors start
increasing and the iterative process should be ceased.

6.4. Results obtained with noisy data: stability of the algorithms

Based on the stopping criterion (38) described in Section 6.3,
the analytical and numerical values for the temperature, u, and
normal heat flux, g, on the under-specified boundary I',, obtained
using the alternating iterative algorithm I, o =1.50 and various
levels of noise added into the temperature data on the over-
specified boundary I'1, for Example 1, are illustrated in Figs. 7(a)
and (b), respectively. From these figures it can be seen that the
numerical solution is a stable approximation for the exact
solution, free of unbounded and rapid oscillations. It should also
be noted from Figs. 7(a) and (b) that the numerical solution
converges to the exact solution as the level of noise, p,, added into
the input Dirichlet data decreases.

The values of the optimal iteration number, Koy the corre-
sponding accuracy errors, ey(kope) and eq(kop:), and the CPU time,
obtained using the alternating iterative algorithm I, the stopping
criterion (38), various levels of noise added into the Dirichlet data
on I’y and various values of the relaxation parameter, w e (0,2), for
the Cauchy problem given by Example 1, are presented in Table 1.
The following major conclusions can be drawn from this table:

(i) For all fixed values of the relaxation parameter w e (0,2), both
accuracy errors ey(kopr) and eq(kop) decrease as p, decreases
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a Table 1
10 The values of the optimal iteration number, kop, the corresponding accuracy errors,
' eu(kopt) and eq(kopt), and the computational time, obtained using the alternating
— Analytical iterative algorithm I, the regularizing stopping criterion (38), various amounts of
o =19 noise added into u|r,, i.e. py € {1%,3%,5%} and p;=0%, and various values for the
Py = 1% relaxation parameter, o, for the Cauchy problem given by Example 1.
059|" "~ Pu=3% )
(&) Pu (%) Pq (%) kopt eu(kopt) eq(kopt) CPU time (S)
~—— py=5%
0.10 1 0 619 0.54281x 1072 0.92962 x 1072 3358.67
3 0 401 021528 x 10~ 0.42797 x 10~  2161.21
S5 0.0 - 5 0 288 0.37941x10~" 0.77268 x 10~' 1521.75
050 1 0 486 0.54322x 1072 0.93019x10-2 2638.01
3 0 318 0.21565x 107! 0.42946 x 10~ 1697.76
5 0 228 0.37961x 10~ 0.77372x10~" 1201.70
-0.5 1.00 1 0 327 0.54264x 1072 0.92927 x10~2  1726.57
3 0 212 021537 x107' 0.42834x10"' 1122.70
5 0 151 037933 x10°! 0.77146x10~'  798.75
1.50 1 0 156 0.53938 x 1072 0.91168 x 1072  826.04
1.0 : : : : 3 0 104 0.21229x10~' 0.41895x10~'  550.37
. -1 -1
0.75 0.8 0.85 0.9 0.95 10 5 0 94 0.36700x 10~ 0.74137 x 10 485.59
G2 1.80 1 0 73 0.36273x 107> 0.53332x10°> 38553
3 0 33 0.99652x1072 0.15014x10~' 17226
b 5 0 32 0.26705x10~' 0.49883 x10~' 166.85
2
— Analytical
== p,=1%
1A= pu=3%
-~ p=5%
In order to assess the performance of the alternating iterative
algorithm [ with under-, no and over-relaxation, we exemplify by
> 0- considering Example 1 with p,=1%: In this case, the CPU times
needed for the alternating iterative algorithm I with @w=0.50
(under-relaxation), @ = 1.00 (no relaxation) and w = 1.50 (over-
relaxation) to reach the numerical solutions for the temperature
-1 and normal heat flux on I', were found to be 2638.01, 1726.57
and 826.04 s, respectively, while the corresponding values for the
optimal iteration number required, ko, were found to be 486,
327 and 156, respectively. This means that, to attain the
-2 numerical solutions for the unknown Dirichlet and Neumann
T T T T . . . . .
0.75 0.8 0.85 0.9 0.95 10 data on I, the alternating iterative algorithm I with over-

G2

Fig. 7. The analytical and numerical (a) temperatures u, and (b) normal heat fluxes
g, on the under-specified boundary I',, obtained using the alternating iterative
algorithm I, & = 1.50 and various levels of noise added into the Dirichlet data on
I'1, namely py € {1%,3%,5%}, for Example 1.

(i.e. the algorithm I is stable with respect to decreasing
the level of noise added into the Dirichlet data on I'q),
while the optimal number of iterations ko and, con-
sequently, the CPU time required for the alternating iterative
algorithm I to reach the numerical solutions for the unknown
temperature and normal heat flux on I'; increase as py
decreases.

(ii) For all fixed amounts of noise added into the temperature on
the over-specified boundary I'y, py € {1%,3%,5%)}, the accu-
racy errors ey(kopt) and eq(kope), the optimal number of
iterations, kope and the CPU time required for the alternating
iterative algorithm I to reach the numerical solutions for the
unknown temperature and normal heat flux on I'; decrease as
w—>2, i.e. as more over-relaxation is introduced in the
algorithm I. However, it should be stressed out that the
differences, in terms of accuracy, between the numerical
results for both u|r, and q|r,, obtained for various values of
the relaxation parameter, w, are not very significant.

relaxation (w =1.50) requires a reduction in the number of
iterations performed and CPU time by approximately 52% and 68%
with respect to those corresponding to the standard iterative
algorithm [ as proposed by Kozlov et al. [26], i.e. without
relaxation (w =1.00), and the alternating iterative algorithm I
with under-relaxation (o = 0.50), respectively.

Similar conclusions to those obtained from Figs. 7(a) and (b)
can be drawn from Figs. 8(a) and (b), which present the numerical
values for the temperature and normal heat flux obtained on the
under-specified boundary I',, in comparison with their analytical
counterparts, using the alternating iterative algorithm I, the
regularizing stopping criterion (38), w=1.50 and various
amounts of noise added into the normal heat flux ql,, i.e.
Dq € {1%,3%,5%}, for Example 1. By comparing Figs. 7 and 8,
it can be observed that, as expected, the alternating iterative
algorithm I applied to Example 1 is more sensitive to noise added
into the normal heat flux q|, than to perturbations of the
temperature u|,, since the former contains first-order derivatives
of the latter.

Table 2 tabulates the values of the optimal iteration number,
kopt, according to the stopping criterion (38), the corresponding
accuracy errors given by Egs. (34a)-(34b), and the CPU time,
obtained using the alternating iterative algorithm I, various levels
of noise added into the Neumann data on I'; and various values of
the relaxation parameter, w € (0,2), for the Cauchy problem given
by Example 1. From Tables 1 and 2 it can be noticed that the
sensitivity of the alternating iterative algorithm I with respect to
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a Table 2
1.0 The values of the optimal iteration number, ko, the corresponding accuracy errors,
—— Analytical ey(kopt) and eq(kopt), and the computational time, obtained using the alternating
iterative algorithm I, the regularizing stopping criterion (38), various amounts of
I 1% noise added into q|,, i.e. p, = 0% and pq € {1%6,3%,5%}, and various values for the
— ==~ p, = 3% relaxation parameter, o, for the Cauchy problem given by Example 1.
0.5 q V0
- - pq =5% (&) Pu (%) Pq (%) kopt eu(kopt) eq(kopt) CPU time (s)
020 O 1 2712 0.17303 x107! 036123 x10~' 14334.21
0.0 0 3 147 0.37652x 107! 0.74374x 107! 778.06
=] ' 0 5 102 051636 x 10! 0.10358 x 10° 539.12
0.50 0 1 2256 0.17303x 10" ! 0.36123 x10~!' 11969.48
0 3 123 0.37281x 10" 0.73587x10"!  649.92
05 0 5 86 0.51805x10~! 0.10351 x 10° 453.42
' 1.00 0 1 1505 0.17303 x 10! 0.36123x10~! 7958.92
0 3 82 0.37811x10~! 0.74868 x 10! 443.25
0 5 57 0.51531x 10" 0.10367 x 10° 298.96
104 = 1.50 0 1 214 0.16612x10"! 0.36080x 10! 1159.87
. . . . 0 3 42 038289x10°! 0.76983x10~' 22534
0.75 0.8 0.85 0.9 0.95 1.0 0 5 30 0.53806x 10! 0.10899 x 10° 162.28
Qo1 1.80 0 1 84 0.16609 x 10! 036073 x107!  450.62
0 18 0.39436x10"! 0.82152x 10! 92.65
b 0 5 17 0.51142x10"! 0.93332x 10! 90.18
2
—— Analytical
- pg=1%
—_— - = 0,
14 Pq= 3% Table 3
- PgT 5% The values of the optimal iteration number, kop., the corresponding accuracy
errors, ey(kope) and eq(kop:), and the computational time, obtained using the
alternating iterative algorithm I, the regularizing stopping criterion (38), various
amounts of noise added into the Cauchy data u|r, and q|r,, i.e. pu,Pq € {196,3%,5%},
- 0 and various values for the relaxation parameter, w, for the Cauchy problem given
by Example 1.
&) Pu (%) Pq (%) kopt eu(kopt) eq(kopt) CPU time (S)
-1 0.50 1 1 1027 0.71000 x 10~2 0.21665 x 10~!  5472.79
1 3 185 0.18098 x 10~! 0.41589 x 10~! 971.34
1 5 126 0.32464 x 10~! 0.67204 x 10~! 660.56
3 1 236 0.13052x10"' 0.30916x10~" 1246.04
o == z ; 3 3 166 0.20953 x 10~! 0.49745 x 10~! 868.96
- ==~ 3 5 108 037518 x10~! 0.70924 x 10! 583.56
T T T T
5 1 208 0.28335x 10! 0.62977 x10~' 1091.03
0.75 0.8 0.85 0.9 0.95 1.0 5 3 140 0.32643 x10~! 0.60176 x 10~" 731.10
0/27T 5 5 90 0.49354x 10~ 0.96463 x 10! 47717
1.00 1 1 686 0.71000x 1072 0.21664 x 10~! 3613.28
Fig. 8. The analytical and numerical (a) temperatures u, and (b) normal heat fluxes 1 3 123 018121 x 1 x 1
. . . L . A x 10 0.50124 x 10 652.39
g, on the under-specified boundary I',, obtained using the alternating iterative 1 1
loorithm I @ < 1.50 and . levels of noi dded into the N dat 1 5 84 0.32410x 10 0.67146 x 10 440.59
?gorl rnl , 0= 1.0/ 3a“n 5:/arlfousEeve slo 1nolse added into the Neumann data on 3 1 157 012907 x 10-' 030292 x10-!  830.95
1, namely pq € {1%,3%,5%), for Example 1. 3 3 112 021329x10~! 0.42030x10~'  585.70
3 5 72 0.37384x10"' 0.70789x10~'  380.37
5 1 139 0.28236x10~! 0.62662 x 10! 733.12
noisy Dirichlet and Neumann data on Iy, for Example 1, results in 5 3 94 033087 x107' 0.61075x10""  491.09
the following: 5 5 60 0.49101x10~' 0.96181x10"!' 31857
150 1 1 345 0.71000x 10-2 0.21662 x10~' 1830.73
-1 -1
(i) More inaccurate numerical results for both u|-, and q|., are 1 3 61 018100 x 10,1 0.49164 x 10,1 32032
. 2 2 1 5 42 0.34582 x 10 0.67966 x 10 230.35
obtained for perturbed normal heat flux on I'; than for noisy 3 1 79 0.12677 x10-! 029744x10-! 41271
temperature on I';. 3 3 56 0.21754x10"' 042368 x10~' 303.82
(ii) The optimal number of iterations kopc and hence the CPU time 3 5 36 0.40714 x 10’1 0.74853 x 10’1 187.03
required for the alternating iterative algorithm I to reach the 5 1 70 027742107~ 061195x107 = 368.18
ical solutions for the unknown temperature and > 3 48 033571107 06209510 25032
numerica p 5 5 32 051137x10°! 099515 x 10~ 16520

normal heat flux on I'; for perturbed temperature on I’
are, in general, larger that those corresponding to noisy
normal heat flux on I';.

The same conclusions, as those drawn from Tables 1 and 2,
regarding the stability of the numerical results obtained using the
alternating iterative algorithm [ with relaxation with respect to
the level of noise added into the Cauchy data, and the sensitivity
of the optimal number of iterations performed and, consequently,
the CPU time required for the alternating iterative algorithm I to

reach the numerical solutions for the unknown temperature and
normal heat flux on I',, remain valid also if both the Dirichlet and
Neumann data on I’y are perturbed by noise and these are
presented in Table 3. The analytical and numerical values for
the temperature, ulr,, and normal heat flux, q|r,, obtained
using the alternating iterative algorithm I, w=1.50 and
Pu =DPq € {1%,3%,5%}, for Example 1, are shown in Figs. 9(a) and
(b), respectively. We can conclude from these figures that stable
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Fig. 9. The analytical and numerical (a) temperatures u, and (b) normal heat fluxes
g, on the under-specified boundary I',, obtained using the alternating iterative
algorithm I, w = 1.50 and various levels of noise added into both the Dirichlet and
the Neumann data on I'y, namely p, = pq € {1%,3%,5%}, for Example 1.

numerical solutions for the unknown temperature and normal
heat flux on I, free of unbounded and rapid oscillations, are
obtained also when both the Dirichlet and Neumann data on I';
are noisy.

Accurate, convergent and stable numerical results for both the
temperature and the normal heat flux on I'; have also been
obtained in the case of the Cauchy problem associated with
Example 1, when using the alternating iterative algorithm II,
various values for the relaxation parameter, w e (0,2), and various
amounts of noise added into the Dirichlet or Neumann data on the
over-specified boundary I';. The quantitative results, obtained for
the alternating iterative algorithm II, various values for the
relaxation parameter and various levels of noise added into
the boundary temperature and normal heat flux data on I'y, are
tabulated in Tables 4 and 5, respectively, in terms of the optimal
iteration number, kop, and the accuracy errors, ey(kop:) and
eq(kopt). From these tables one can draw similar conclusions
regarding the sensitivity of the number of iterations performed
and corresponding accuracy errors as functions of the relaxation

Table 4

The values of the optimal iteration number, kop, the corresponding accuracy errors,
eu(kopt) and eq(kopt), and the computational time, obtained using the alternating
iterative algorithm II, the regularizing stopping criterion (38), various amounts of
noise added into u|r,, i.e. py € {1%,3%,5%} and pq = 0%, and various values for the

relaxation parameter, o, for the Cauchy problem given by Example 1.

® Pu (%) Dpq (%) kopt

eu( kopt)

eq( kopt)

CPU time (s)

0.10 623
385

285

489
303
266

329
203
151

169
109
79

44
35
34

Ul W o=

0.50

U W = U W =

Ul W o=

1.80

W -
OO0 OO0 OO0 OO0 OoOOoO0

0.54361 x 1072
0.22545 x 107!
0.38194 x 107!

0.54413 x 1072
0.22559 x 10!
0.38938 x 10!

0.54353 x 1072
0.22568 x 10!
0.38179 x 107!

0.54077 x 1072
0.21857 x 10~!
0.37893 x 10!

0.31226 x 1072
0.99887 x 1072
0.26742 x 107!

0.93071 x 1072
0.45549 x 10~!
0.79425 x 10~!

0.93141 x 1072
0.45553 x 10!
0.79975 x 10~!

0.93070 x 10~2
0.45621 x 107!
0.79401 x 10!

0.92723 x 1072
0.44030 x 107!
0.77958 x 10!

0.45855 x 102
0.13793 x 10~!
0.51738 x 10!

3362.93
2079.95
1546.75

2634.54
1639.37
1444.64

1764.76
1097.26
821.40

905.82
605.76
400.17

234.50
186.35
181.01

Table 5

The values of the optimal iteration number, kop, the corresponding accuracy errors,
ey(kopt) and eq(kope), and the computational time, obtained using the alternating
iterative algorithm II, the regularizing stopping criterion (38), various amounts of
noise added into q|r,, i.e. p,=0% and pq € {1%,3%,5%)}, and various values for the
relaxation parameter, ), for the Cauchy problem given by Example 1.

(& Pu (%) Pq (%) kopt eu(kopt) eq(kopt) CPU time (s)
020 0 1 2712 0.17303x10~" 0.36123x 10! 14416.84
0 3 157 0.37734x10°" 0.74557 x10~'  858.67
0 5 109 0.52036 x 10~! 0.10410 x 10° 575.31
0.50 0 1 2265 0.17303x10~' 0.36123x 10! 11879.26
0 3 132 0.37845x10°' 0.74412x10"'  686.39
0 5 92 0.52116x 10! 0.10353 x 10° 484.29
1.00 0 1 1511 0.17303x10~' 0.36123 x10~' 8038.51
0 3 88 0.37314x 10! 0.73381x10~!  460.82
0 5 61 0.51861x 10! 0.10322 x 10° 322.15
150 0 1 217 0.16612x10~! 0.36080x 10" 1147.50
0 3 45 037569 x10~' 0.73196x10~!  244.48
0 5 36 0.51668 x 10~! 0.10092 x 10° 183.39
180 0 1 113 0.16612x10~' 0.36080x 10~!  596.75
0 3 19 0.41349x10~"' 0.82088 x 10! 98.28
0 5 18 0.59205x 10" 0.11916 x 10° 95.53

parameter to those obtained for the alternating iterative algo-
rithm I and displayed in Tables 1 and 2.

The performance of the alternating iterative algorithm II with
under-, no and over-relaxation is exemplified by considering
Example 1 with p,=1%: In this case, the CPU times needed for the
alternating iterative algorithm II with @w=0.50 (under-relaxa-
tion), w =1.00 (no relaxation) and w = 1.50 (over-relaxation) to
reach the numerical solutions for u|r, and q|r, were found to be
11879.26, 8038.51 and 1147.50s, respectively, while the corre-
sponding values for the optimal iteration number required, Kopt,
were found to be 2265, 1511 and 217, respectively. This means
that, in order to attain the numerical solutions for the unknown
Dirichlet and Neumann data on I, the alternating iterative
algorithm II with over-relaxation (w = 1.50) requires a reduction
in the number of iterations performed, as well as CPU time, by
approximately 85% and 90% with respect to those corresponding
to the standard iterative algorithm II as proposed by Kozlov et al.
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Fig. 10. The analytical and numerical (a) temperatures u, and (b) normal heat
fluxes g, on the under-specified boundary I, obtained using the alternating
iterative algorithm I, @ = 1.50 and various levels of noise added into the Neumann
data on I'y, namely pq € {1%,3%,5%}, for Example 2.

[26], i.e. without relaxation (w=1.00), and the alternating
iterative algorithm II with under-relaxation (w =0.50),
respectively.

The proposed MFS-alternating iterative algorithm I, in con-
junction with the stopping criterion (38), works equally well also
for the Cauchy problem (4a)-(4c) associated with the Laplace
equation in a simply connected convex two-dimensional domain
with a piecewise smooth boundary, such as the rectangle
investigated in Example 2. Figs. 10(a) and (b) show the numerical
results for the temperature and normal heat flux on the boundary
I';, obtained using the stopping criterion (38), M=N=116,
= 1.50 and various amounts of noise added into the Neumann
data, namely pq € {1%,3%,5%}, in comparison with their corre-
sponding analytical values, in the case of Example 2.

Similar stable numerical results for both the unknown
temperature, u|r,, and normal heat flux, q|r,, which are at the
same time free of unbounded and rapid oscillations, have been
obtained, using the alternating iterative algorithm II, M = N = 80,
=150 and py € {1%,3%,5%]}, for the two-dimensional steady-

a
15
1.0
0.5 1
S5 0.0
-0.5
-1.0 -
'1 .5 T T T T
0.75 0.8 0.85 0.9 0.95 1.0
Gr2m
b
o

0.75 0.8 0.85 0.9 0.95 1.0
Gr2m

Fig. 11. The analytical and numerical (a) temperatures u, and (b) normal heat
fluxes g, on the under-specified boundary I';, obtained using the alternating
iterative algorithm II, ® = 1.50 and various levels of noise added into the Dirichlet
data on I'y, namely py € {1%,3%,5%}, for Example 3.

state isotropic heat conduction Cauchy problem (4a)-(4c) in a
simply connected concave domain with a smooth boundary, such
as the epitrochoid considered in Example 3, and these are
illustrated in Figs. 11(a) and (b), respectively. The same conclu-
sions have been obtained when solving the Cauchy problem (4a)-
(4b) corresponding to the Laplace equation in a doubly connected
concave domain with a smooth boundary, namely the annular
domain considered in Example 4, by employing the alternating
iterative algorithm II, M = N = 100, w = 1.50 and noisy Neumann
data (pq € {1%,5%,10%)}), while the analytical and numerical
results for the unknown temperature, u|r,, and normal heat
flux, q|r,, are displayed in Figs. 12(a) and (b), respectively.

From the numerical results presented in this section, it can be
concluded that the stopping criterion developed in Section 6.3 has
a regularizing effect and the numerical solution obtained by the
iterative MFS described in this paper is convergent and stable
with respect to increasing the number of MFS boundary colloca-
tion points and decreasing the level of noise added into the
Cauchy input data, respectively.
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Fig. 12. The analytical and numerical (a) temperatures u, and (b) normal heat
fluxes g, on the under-specified boundary I',, obtained using the alternating
iterative algorithm I, @ = 1.50 and various levels of noise added into the Neumann
data on I'y, namely pq € {1%,5%,10%)}, for Example 4.

7. Conclusions

In this paper, we proposed two algorithms involving the
relaxation of either the given Dirichlet data (temperature) or the
prescribed Neumann data (normal heat flux) on the over-specified
boundary in the case of the alternating iterative algorithm of
Kozlov et al. [26] applied to two-dimensional steady-state
isotropic heat conduction Cauchy problems. The two mixed,
well-posed and direct problems corresponding to each iteration of
the numerical procedure were solved using a meshless method,
namely the MFS, in conjunction with the Tikhonov regularization
method. For each direct problem considered, the optimal value of
the regularization parameter was selected according to the GCV
criterion. An efficient regularizing stopping criterion which ceases
the iterative procedure at the point where the accumulation of
noise becomes dominant and the errors in predicting the exact
solutions increase, was also presented. The MFS-based iterative
algorithms with relaxation were tested for Cauchy problems

associated with the Laplace operator in simply and doubly
connected, convex and concave domains, with smooth or
piecewise smooth boundaries. The numerical results obtained
using these procedures that the proposed methods are consistent,
accurate, convergent with respect to increasing the number of
MFS boundary collocation points and stable with respect to
decreasing the amount of noise added into the Cauchy data. One
possible disadvantage of the MFS-based iterative algorithms is
related to the optimal choice of the regularization parameter
associated with the Tikhonov regularization method which
requires, at each step of the alternating iterative algorithm of
Kozlov et al. [26], additional iterations with respect to the
regularization parameter. However, this inconvenience was over-
come by employing the relaxation procedures presented in this
study, emphasizing at the same time the computational efficiency
of the relaxation procedures applied to the alternating iterative
algorithm of Kozlov et al. [26].
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