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We investigate two algorithms involving the relaxation of either the given Dirichlet data (boundary

temperatures) or the prescribed Neumann data (normal heat fluxes) on the over-specified boundary in

the case of the alternating iterative algorithm of Kozlov et al. [26] applied to two-dimensional steady-

state heat conduction Cauchy problems, i.e. Cauchy problems for the Laplace equation. The two mixed,

well-posed and direct problems corresponding to each iteration of the numerical procedure are solved

using a meshless method, namely the method of fundamental solutions (MFS), in conjunction with the

Tikhonov regularization method. For each direct problem considered, the optimal value of

the regularization parameter is chosen according to the generalized cross-validation (GCV) criterion.

The iterative MFS algorithms with relaxation are tested for Cauchy problems associated with the

Laplace operator in various two-dimensional geometries to confirm the numerical convergence,

stability, accuracy and computational efficiency of the method.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

A classical and quite often encountered inverse problem in
heat transfer is the so-called Cauchy problem. For such a problem,
the boundary of the solution domain, the thermal conductivities
and/or the heat sources are all known, while the boundary
conditions are incomplete. More precisely, both Dirichlet
(temperature) and Neumann (normal heat flux) conditions are
prescribed on a part of the boundary, while on the remaining
portion of the boundary no data are available. It is well known
that Cauchy problems are generally ill-posed, see e.g. Hadamard
[17], in the sense that the existence, uniqueness and stability of
their solutions are not always guaranteed. Consequently, a special
treatment of these problems is required.

There are numerous important contributions in the literature,
as well as various approaches, to the theoretical and numerical
solutions of the Cauchy problem associated with the steady-state
heat conduction in isotropic media, i.e. the Laplace equation. The
method of quasi-reversibility, in conjunction with a finite-
difference method (FDM) and Carleman-type estimates, were
employed by Klibanov and Santosa [25] to solve this inverse
problem. Kozlov et al. [26] proposed an alternating iterative
algorithm for the stable solution of this problem, which was
implemented using the boundary element method (BEM) by
Lesnic et al. [28]. Ang et al. [2] reformulated the Cauchy problem
ll rights reserved.
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as an integral equation problem and solved the latter by using the
Fourier transform, together with the Tikhonov regularization
method. Reinhardt et al. [47] proved that the standard five-point
FDM approximation to the Cauchy problem for the Laplace
equation satisfies some stability estimates and hence it turns
out to be a well-posed problem, provided that a certain bounding
requirement is fulfilled. As a result of a variational approach to the
Cauchy problem, the conjugate gradient method, in conjunction
with the BEM, was proposed by H�ao and Lesnic [19] in order to
obtain a stable solution. Cheng et al. [6] transformed the original
problem into a moment problem by using Green’s formula and
they also provided an error estimate for the numerical solution.
Hon and Wei [21] converted the Cauchy problem into a classical
moment problem whose numerical approximation can be
achieved and also provided a convergence proof based on
Backus-Gilbert algorithm. Cimeti�ere et al. [8] reduced the Cauchy
problem for the Laplace equation to solving a sequence of
optimization problems under equality constraints using the finite
element method (FEM). The minimization functional consists of
two terms that measure the gap between the optimal element
and the over-specified data and the gap between the optimal
element and the previous optimal element (regularization term),
respectively. This method was later implemented using the BEM
by Delvare et al. [11]. Cimeti�ere et al. [9] reduced the solution of
harmonic Cauchy problems to the resolution of a fixed point
process, while the authors implemented numerically the pro-
posed method by employing both the BEM and the FEM.
Jourhmane et al. [24] developed three relaxation procedures in
order to increase the rate of convergence of the algorithm of
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Kozlov et al. [26], at the same time selection criteria for the
variable relaxation factors having been provided. Bourgeois [3]
approached the Cauchy problem for the Laplace equation by the
mixed formulation of the method of quasi-reversibility, which
finally led to a C0 FEM. Andrieux et al. [1] introduced an energy-
like error functional and converted the inverse problem into an
optimization problem. In order to improve the reconstruction of
the normal derivatives, Delvare and Cimeti�ere [10] extended the
method originally proposed by Cimeti�ere et al. [8] to a higher-
order one, which was implemented using the BEM. On assuming
the available data to have a Fourier expansion, Liu [31] applied a
modified indirect Trefftz method to solve the Cauchy problem for
the Laplace equation.

The method of fundamental solutions (MFS) is a simple but
powerful technique that has been used to obtain highly accurate
numerical approximations of solutions to linear partial differen-
tial equations. Like the BEM, the MFS is applicable when a
fundamental solution of the governing PDE is explicitly known.
Since its introduction as a numerical method in the late 1970s by
Mathon and Johnston [42], it has been successfully applied to a
large variety of physical problems, an account of which may be
found in the excellent survey papers by Cho et al. [7], Fairweather
and Karageorghis [13], Fairweather et al. [14] and Golberg and
Chen [15]. The ease of implementation of the MFS and its low
computational cost make it an ideal candidate for inverse
problems as well. For these reasons, the MFS, in conjunction
with various regularization methods (e.g. the Tikhonov regular-
ization method, Morozov’s discrepancy principle, singular value
decomposition), have been used increasingly over the last decade
for the numerical solution of inverse problems. For example, the
Cauchy problem associated with the heat conduction equation
[12,29,35,36,43,48,51–54], linear elasticity [32,39], steady-state
heat conduction in functionally graded materials [33], Helmholtz-
type equations [23,34,37,40], Stokes problems [5], the biharmonic
equation [41] etc. have been successfully addressed by using the
MFS.

Recently, Marin [36] solved numerically the Cauchy problem
in steady-state isotropic heat conduction (Laplace equation) by
applying, in an iterative manner, the MFS for the alternating
iterative algorithm of Kozlov et al. [26]. At each iteration, Marin
[36] solved two mixed, well-posed and direct problems using the
MFS, in conjunction with the Tikhonov regularization method. For
each of the aforementioned direct problems, the optimal value of
the regularization parameter was chosen according to the
generalized cross-validation (GCV) criterion. Consequently, an
iterative procedure, which provides the selection of the optimal
regularization parameter, occurs within each step of the iterative
algorithm of Kozlov et al. [26] and hence the computational cost
of the iterative MFS-based algorithm is increased. In order to
overcome this inconvenience, we decided to employ two relaxa-
tion procedures, as proposed by Jourhmane et al. [24], for the
iterative MFS-based algorithm implemented by Marin [36] and
study the influence of the relaxation parameter upon the rate of
convergence of the modified method. The efficiency of these
relaxation procedures is tested for Cauchy problems associated
with the two-dimensional Laplace operator in simply and doubly
connected, convex and concave domains, with smooth or
piecewise smooth boundaries.
2. Mathematical formulation

Consider a bounded Lipschitz domain O�Rd, where d is the
dimension of the space where the problem is posed, usually
dAf1,2,3g, occupied by an isotropic medium. We assume that O is
bounded by a piecewise smooth curve @O, such that @O¼G1 [G2,
where G1a|, G2a| and G1 \ G2 ¼ |. Let H1ðOÞ be the Sobolev
space of real-valued functions in O endowed with the standard
norm, see e.g. Lions and Magenes [30]. We denote by H1

0ðOÞ and
H1
Gi
ðOÞ, i¼1, 2, the subspaces of functions from H1ðOÞ that vanish

on @O and Gi, i¼1, 2, respectively.
The space of traces of functions from H1ðOÞ to @O is denoted by

H1=2ð@OÞ, while the restrictions of the functions belonging to the
space H1=2ð@OÞ to the subset Gi � @O, i¼1,2, define the space
H1=2ðGiÞ, i¼1, 2. The set of real valued functions in @O with
compact support in Gi, i¼1, 2, and bounded first-order derivatives
are dense in H1=2ðGiÞ, i¼1, 2. Furthermore, we also define the
space H1=2

00 ðGiÞ, i¼1, 2, that consists of functions from H1=2ð@OÞ and
vanishing on G3�i, i¼1, 2. The space H1=2

00 ðGiÞ, i¼1, 2, is a subspace
of H1=2ð@OÞ with the norm given by

Jf J
H1=2

00
ðGiÞ
¼

Z
Gi

f 2ðxÞ

distðx,GiÞ
dGðxÞþ

Z
Gi

Z
Gi

f ðxÞ�f ðyÞj2

jx�yjd
dGðxÞdGðyÞ

� �1=2

:

ð1Þ

It should be mentioned that the space of restrictions from H1=2
00 ðGiÞ

to Gi, i¼1, 2, is dense in H1=2ðGiÞ, i¼1, 2. Nonetheless,
H1=2

00 ðGiÞaH1=2ðGiÞ. Finally, we denote by ðH1=2
00 ðGiÞÞ

� the dual
space of H1=2

00 ðGiÞ, i¼1, 2.
In this paper, we refer to steady-state heat conduction

applications in isotropic homogeneous media in the absence of
heat sources. Consequently, the function u(x) denotes the
temperature at a point xAO and satisfies the heat balance
equation

r2uðxÞ �
Xd

i ¼ 1

@i@iuðxÞ ¼ 0, x¼ ðx1, . . . ,xdÞAO, ð2Þ

where @i � @=@xi. We now let n(x) be the unit outward normal
vector at @O and q(x) be the normal heat flux at a point xA@O
defined by

qðxÞ � �ruðxÞ � nðxÞ ¼�
Xd

i ¼ 1

@iuðxÞniðxÞ, xA@O: ð3Þ

In the direct problem formulation, the knowledge of the
location, shape and size of the entire boundary @O, the
temperature and/or normal heat flux on the entire boundary @O
gives the corresponding Dirichlet, Neumann, Robin, or mixed
boundary conditions which enable us to determine the unknown
boundary conditions, as well as the temperature distribution in
the solution domain. In many engineering problems, a different
and more interesting situation occurs when both the temperature
and the normal heat flux are prescribed on a part of the boundary,
say G1, while no boundary conditions are supplied on the
remaining part of the boundary G2 ¼ @O\G1. More precisely, we
consider the following Cauchy problem for steady-state heat
conduction in an isotropic homogeneous medium:

r
2uðxÞ ¼ 0, xAO, ð4aÞ

uðxÞ ¼ ~uðxÞ, xAG1, ð4bÞ

qðxÞ ¼ ~qðxÞ, xAG1, ð4cÞ

where ~uAH1=2ðG1Þ and ~qAðH1=2
00 ðG1ÞÞ

� are prescribed Dirichlet and
Neumann boundary conditions, respectively.

A necessary condition for the Cauchy problem given by Eqs.
(4a)–(4c) to be identifiable is that measðG1Þ40, see Isakov [22].
However, in the discretised version of the aforementioned Cauchy
problem, the corresponding identifiability condition reduces to
measðG1ÞZmeasðG2Þ, see, e.g. Lesnic et al. [28]. This inverse
problem is much more difficult to solve both analytically and
numerically than the direct problem, since the solution does not
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satisfy the general conditions of well-posedness. Although the
problem may have a unique solution, it is well known that
this solution is unstable with respect to small perturbations into
the data on G1, see Hadamard [17]. Thus the problem is ill-posed
and, therefore, regularization methods are required in order to
solve accurately the inverse problem (4a)–(4c) for the Laplace
equation.
3. Alternating iterative algorithms with relaxation

In this section, we present two alternating iterative algorithms
with relaxation, as proposed by Jourhmane et al. [24], which aim
to reduce the computational time of the alternating iterative
algorithm introduced by Kozlov et al. [26] for the simultaneous
and stable reconstruction of both the unknown temperature ujG2

and the normal heat flux qjG2
.

Alternating iterative algorithm with relaxation I:
Step 1: (i) If k¼1 then specify an initial guess for the normal

heat flux on G2, namely qð2k�1ÞAðH1=2
00 ðG2ÞÞ

�.
(ii) If kZ2 then solve the following mixed, well-posed, direct

problem:

r
2uð2k�1ÞðxÞ ¼ 0, xAO, ð5aÞ

qð2k�1ÞðxÞ ¼ ~qðxÞ, xAG1, ð5bÞ

uð2k�1ÞðxÞ ¼ uð2k�2ÞðxÞ, xAG2 ð5cÞ

to determine u(2k�1)(x), xAO, and qð2k�1ÞðxÞ ��ruð2k�1ÞðxÞ � nðxÞ,
xAG2.

Step 2: Update the unknown Neumann data on G2 by setting

xðkÞðxÞ ¼
qð2k�1ÞðxÞ for k¼ 1,

o qð2k�1ÞðxÞþð1�oÞxðk�1Þ
ðxÞ for kZ2,

(
xAG2, ð6Þ

where oA ð0,2Þ is a fixed relaxation factor.
Having constructed the approximation u(2k�1), kZ1, the

following mixed, well-posed, direct problem:

r
2uð2kÞðxÞ ¼ 0, xAO, ð7aÞ

uð2kÞðxÞ ¼ ~uðxÞ, xAG1, ð7bÞ

qð2kÞðxÞ ¼ xðkÞðxÞ, xAG2 ð7cÞ

is solved in order to determine u(2k)(x), xAO, and u(2k)(x), xAG2.
Step 3: Repeat steps 1 and 2 until a prescribed stopping

criterion is satisfied.

Remark 3.1. The value o¼ 1 in Eq. (6) corresponds to the
alternating iterative algorithm introduced by Kozlov et al. [26]
with an initial guess for the Neumann data, while the values
oA ð0,1Þ and oAð1,2Þ in Eq. (6) correspond to the alternating
iterative algorithm introduced by Kozlov et al. [26] with an initial
guess for the Neumann data and a constant under- and over-
relaxation factor, respectively.

Alternating iterative algorithm with relaxation II:
Step 1: (i) If k¼1 then specify an initial guess for the boundary

temperature on G2, namely uð2k�1ÞAH1=2ðG2Þ.
(ii) If kZ2 then solve the following mixed, well-posed, direct

problem:

r
2uð2k�1ÞðxÞ ¼ 0, xAO, ð8aÞ

uð2k�1ÞðxÞ ¼ ~uðxÞ, xAG1, ð8bÞ

qð2k�1ÞðxÞ ¼ qð2k�2ÞðxÞ, xAG2 ð8cÞ

to determine u(2k�1)(x), xAO, and u(2k�1)(x), xAG2.
Step 2: Update the unknown Dirichlet data on G2 by setting

ZðkÞðxÞ ¼
uð2k�1ÞðxÞ for k¼ 1,

ouð2k�1ÞðxÞþð1�oÞ Zðk�1ÞðxÞ for kZ2,

(
xAG2, ð9Þ

where oAð0,2Þ is a fixed relaxation factor.
Having constructed the approximation u(2k�1), kZ1, the

following mixed, well-posed, direct problem:

r2uð2kÞðxÞ ¼ 0, xAO, ð10aÞ

qð2kÞðxÞ ¼ ~qðxÞ, xAG1, ð10bÞ

uð2kÞðxÞ ¼ ZðkÞðxÞ, xAG2 ð10cÞ

is solved in order to determine u(2k)(x), xAO, and
qð2kÞðxÞ � �ruð2kÞðxÞ � nðxÞ, xAG2.

Step 3: Repeat steps 1 and 2 until a prescribed stopping
criterion is satisfied.

Remark 3.2. The value o¼ 1 in Eq. (9) corresponds to the
alternating iterative algorithm introduced by Kozlov et al. [26]
with an initial guess for the Dirichlet data, while the values
oAð0,1Þ and oA ð1,2Þ in Eq. (9) correspond to the alternating
iterative algorithm introduced by Kozlov et al. [26] with an initial
guess for the Dirichlet data and a constant under- and over-
relaxation factor, respectively.

The convergence of the alternating iterative algorithm with
relaxation II presented above can be recast in the following
convergence theorem, with the mention that a similar result can
also be obtained for the alternating iterative algorithm with
relaxation I:

Theorem 3.1. Let ~uAH1=2ðG1Þ and ~qAðH1=2
00 ðG1ÞÞ

�, and assume that

the Cauchy problem (4a)–(4c) has a solution uAH1ðOÞ. Let u(k) be the

k-th approximate solution in the alternating procedure II described

above. Then there exists a number 1obr2 such that when the

relaxation parameter o is chosen with 1rorb, then

lim
k-1

Ju�uðkÞJH1ðOÞ ¼ 0 ð11Þ

for any initial data element Zð1ÞAH1=2ðG2Þ.

The proof for this theorem in the case of the proposed
relaxation algorithms associated with the Cauchy problem for
the Laplace equation is similar to that for the corresponding
relaxation algorithms for the Cauchy problem in elasticity, see
Marin and Johansson [38]. The proof given by Marin and
Johansson [38] is based on the reformulation of the Cauchy
problem (4a)–(4c) as a fixed point operator equation with a self-
adjoint, injective, positive definite and non-expansive operator,
while the scheme is shown to be a fixed point iteration for that
equation. An alternative proof for the convergence result can also
be found in Jourhmane et al. [24]. As reported by Marin and
Johansson [38] for Cauchy problems associated with the Navier-
Lamé system of elasticity, it was also found for two-dimensional
steady-state isotropic heat conduction Cauchy problems that a
relaxation factor o42 cannot be employed since the iterative
process becomes divergent in such a situation.

It is important to mention that, in general, the iterative
algorithms described above do not converge if the mixed
problems in the steps 1 and 2 of the algorithms are replaced by
Dirichlet or Neumann problems. In addition, the Neumann direct
problem associated with the Laplace equation is ill-posed owing
to the non-uniqueness or non-existence of solution with respect
to whether the integral of the normal heat flux q over the
boundary @O vanishes or not, respectively.
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4. Method of fundamental solutions

The fundamental solution G of the heat balance equation (2)
or (4a) for two-dimensional steady-state heat conduction in
isotropic homogeneous media, i.e. the Laplace equation, is given
by [13]

Gðx,nÞ ¼
1

2p log
1

Jx�nJ
, xAO, nAR2

\O, ð12Þ

where n is a singularity or source point. The main idea of the MFS
consists of approximating the temperature in the solution domain
by a linear combination of fundamental solutions with respect to
M singularities nðjÞ, j¼ 1, . . . ,M, in the form

uðxÞ � uMðc,n;xÞ ¼
XM
j ¼ 1

cjGðx,nðjÞÞ, xAO, ð13Þ

where c¼ ½c1, . . . ,cM�
T and nAR2M is a vector containing the

coordinates of the singularities nðjÞ, j¼1, y, M. On taking into
account the definitions of the normal heat flux (3) and the
fundamental solution for the two-dimensional Laplace equation
(12) then the normal heat flux, through a curve defined by
the outward unit normal vector n(x), can be approximated on the
boundary @O by

qðxÞ � qMðc,n;xÞ ¼
XM
j ¼ 1

cjHðx,nðjÞÞ, xA@O, ð14Þ

where

Hðx,nÞ ¼ �rxGðx,nÞ�nðxÞ ¼
1

2p
ðx�nÞ � nðxÞ

Jx�nJ2
, xA@O, nAR2

\O:

ð15Þ

Next, we select the N1 MFS collocation points fxðiÞgN1

i ¼ 1 on the
boundary G1 and the N2 MFS collocation points fxðiÞgN1þN2

i ¼ N1þ1 on
the boundary G2, such that the total number of MFS collocation
points used to discretize the boundary @O of the solution domain
O is given by N ¼ N1 + N2.

According to the MFS approximations (13) and (14), the
discretized versions of the boundary value problems (5a)–(5c)
and (7a)–(7c), or (8a)–(8c) and (10a) and (10c) recast as

Að1Þcð2k�1Þ ¼ bð2k�1Þ, k41, ð16Þ

and

Að2Þcð2kÞ ¼ bð2kÞ, kZ1, ð17Þ

respectively. For example, in the case of the alternating iterative
algorithm with relaxation I, the components of the MFS matrices
and right-hand side vectors corresponding to Eqs. (16) and (17)
are given by

Að1Þij ¼
HðxðiÞ,nðjÞÞ, i¼ 1, . . . ,N1, j¼ 1, . . . ,M,

GðxðiÞ,nðjÞÞ, i¼N1þ1, . . . ,N1þN2, j¼ 1, . . . ,M,

(
ð18aÞ

bð2k�1Þ
i ¼

~qðxðiÞÞ, i¼ 1, . . . ,N1,

uð2k�2ÞðxðiÞÞ, i¼N1þ1, . . . ,N1þN2,

(
ð18bÞ

and

Að2Þij ¼
GðxðiÞ,nðjÞÞ, i¼ 1, . . . ,N1, j¼ 1, . . . ,M,

HðxðiÞ,nðjÞÞ, i¼N1þ1, . . . ,N1þN2, j¼ 1, . . . ,M,

(
ð19aÞ

bð2kÞ
i ¼

~uðxðiÞÞ, i¼ 1, . . . ,N1,

xðkÞðxðiÞÞ, i¼N1þ1, . . . ,N1þN2,

(
ð19bÞ
respectively. Similar expressions are obtained in the case of the
alternating iterative algorithm with relaxation II, and therefore
they are not presented.

Each of Eqs. (16) and (17) represents a system of N

linear algebraic equations with M unknowns, namely the MFS
coefficients cð2k�1Þ ¼ ½cð2k�1Þ

1 , . . . ,cð2k�1Þ
M �T and cð2kÞ ¼ ½cð2kÞ

1 , . . . ,cð2kÞ
M �

T,
respectively. It should be noted that in order to uniquely
determine the solutions cð2k�1ÞARM and cð2kÞARM to the systems
of linear algebraic equations (16) and (17), respectively, the
number N of MFS boundary collocation points on the boundary @O
and the number M of singularities must satisfy the inequality
MrN. However, the systems of linear algebraic equations (16)
and (17) cannot be solved by direct methods, such as the least-
squares method, since such an approach would produce a highly
unstable solution in the case of noisy Cauchy data on G1.

In order to implement the MFS, the location of the singularities
has to be determined and this is usually achieved by considering
either the static or the dynamic approach. In the static approach,
the singularities are pre-assigned and kept fixed throughout the
solution process, whilst in the dynamic approach, the singularities
and the unknown coefficients are determined simultaneously
during the solution process, see Fairweather and Karageorghis
[13]. Thus the dynamic approach transforms the inverse problem
into a more difficult nonlinear ill-posed problem which is also
computationally much more expensive. The advantages and
disadvantages of the MFS with respect to the location of the
fictitious sources are described at length in Heise [20] and Burgess
and Maharejin [4]. Recently, Gorzelańczyk and Ko"odziej [16]
thoroughly investigated the performance of the MFS with respect
to the shape of the pseudo-boundary on which the source points
are situated, proving that, for the same number of boundary
collocation points and sources, more accurate results are obtained
if the shape of the pseudo-boundary is similar to that of the
boundary of the solution domain. Therefore, we have decided to
employ the static approach in our computations, at the same time
accounting for the findings of Gorzelańczyk and Ko"odziej [16].
5. Regularization

Since the right-hand sides of the systems of linear algebraic
equations (16) and (17) are in general polluted by noise, the
retrieval of accurate and stable solutions to Eqs. (16) and (17) is
very important for obtaining physically meaningful numerical
results. For perturbed right-hand sides in Eqs. (16) and (17), the
direct inversion of these equations or, equivalently, a least-
squares minimization applied to Eqs. (16) and (17) will fail to
produce stable, accurate and physically meaningful numerical
solutions. It is the purpose of this section to present a classical
regularization procedure for obtaining such solutions to the
systems of linear algebraic equations (16) and (17), as well as
details regarding the optimal choice of the regularization
parameter.
5.1. Tikhonov regularization method

Several regularization techniques used for the stable solution
of systems of linear and nonlinear algebraic equations are
available in the literature, such as the singular value decomposi-
tion [18], the Tikhonov regularization method [49] and various
iterative methods [27]. In this study, we have decided to employ
the Tikhonov regularization method.

Consider the following system of linear algebraic equations:

Ac¼ b, ð20Þ
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where NZM, AARN	M , cARM and bARN . Note that Eq. (20) may
describe each of the MFS systems of linear equations (16) and
(17), provided that

A¼Að1Þ, c¼ cð2k�1Þ, b¼ bð2k�1Þ, k41, ð21Þ

and

A¼Að2Þ, c¼ cð2kÞ, b¼ bð2kÞ, kZ1, ð22Þ

respectively. The Tikhonov zeroth-order regularized solution to
the generically written system of linear algebraic equations (20) is
sought as, see Tikhonov and Arsenin [49]

clARM : F lðclÞ ¼ min
cARM

F lðcÞ, ð23Þ

where F l represents the Tikhonov zeroth-order regularization
functional given by, see Tikhonov and Arsenin [49]

F lð�Þ : R
M
�!½0,1Þ, F lðcÞ ¼ JAc�bJ2

þl2
JcJ2, ð24Þ

and l40 is the regularization parameter to be prescribed.
Formally, the Tikhonov regularized solution cl of the problem
(20) is given as the solution of the normal equation

ðATAþl2IMÞc¼ ATb, ð25Þ

where IM ARM	M is the identity matrix, namely

cl ¼ Ayb, Ay � ðATAþl2IMÞ
�1AT: ð26Þ

To summarize, the Tikhonov regularization method solves a
constrained minimization problem using a smoothness norm in
order to provide a stable solution which fits the data and also has
a minimum structure.

5.2. Selection of the optimal regularization parameter

The performance of regularization methods depends crucially
on the suitable choice of the regularization parameter. One
extensively studied criterion is the discrepancy principle, see
e.g. Morozov [45]. Although this criterion is mathematically
rigorous, it requires a reliable estimation of the amount of noise
added into the data which may not be available in practical
problems. Heuristic approaches are preferable in the case when
no a priori information about the noise is available. For the
Tikhonov zeroth-order regularization method, several heuristic
approaches have been proposed, including the L-curve criterion,
see Hansen [18], and the generalized cross-validation (GCV), see
Wahba [50]. In this paper, we employ the GCV criterion to
determine the optimal regularization parameter, lopt, for the
Tikhonov zeroth-order regularization method, namely

lopt : GðloptÞ ¼min
l40
GðlÞ: ð27Þ

Here

Gð�Þ : ð0,1Þ�!½0,1Þ, GðlÞ ¼ JAcl�be
J2

½traceðIN�AAyÞ�2
, ð28Þ

where cl is given by Eq. (26) with b¼ be.
6. Numerical results and discussion

In this section, we present the performance of the proposed
numerical method, namely the alternating iterative MFS
described in Sections 3 and 4. To do so, we solve numerically
the Cauchy problem given by Eqs. (4a)–(4c) for the two-
dimensional Laplace equation in the geometries described below,
see also Figs. 1(a)–(d).
6.1. Examples
Example 1 (Simply connected convex domain with a smooth

boundary, see Fig. 1(a)). We consider the following analytical
solution for the temperature

uðanÞðxÞ ¼ x2
1�x2

2, x¼ ðx1,x2ÞAO, ð29aÞ

and the corresponding analytical normal heat flux

qðanÞðxÞ ¼ 2½x1n1ðxÞ�x2n2ðxÞ�, x¼ ðx1,x2ÞA@O, ð29bÞ

in the unit disc O¼ fx¼ ðx1,x2ÞjrðxÞorg, where rðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

1þx2
2

q
is

the radial polar coordinate of x and r¼1.0. Here G1 ¼

fxA@Oj0ryðxÞr3p=2g and G2 ¼ fxA@Oj3p=2oyðxÞo2pg,
where yðxÞ is the angular polar coordinate of x.

Example 2 (Simply connected convex domain with a piecewise

smooth boundary, see Fig. 1(b)). We consider the following
analytical solutions for the temperature and the normal heat flux

uðanÞðxÞ ¼ cosðx1Þcoshðx2Þþsinðx1Þsinhðx2Þ, x¼ ðx1,x2ÞAO, ð30aÞ

and

qðanÞðxÞ ¼ ½�sinðx1Þcoshðx2Þþcosðx1Þsinhðx2Þ�n1ðxÞ

þ½cosðx1Þsinhðx2Þþsinðx1Þcoshðx2Þ�n2ðxÞ, x¼ ðx1,x2ÞA@O,

ð30bÞ

respectively, in the rectangle O¼ ð�r,rÞ 	 ð�r=2,r=2Þ, where r¼

1.0. Here G1 ¼ frg 	 ð�r=2,r=2Þ [ ½�r,r� 	 f7r=2g and G2 ¼ f�rg

	ð�r=2,r=2Þ.

Example 3 (Simply connected concave domain with a smooth

boundary, see Fig. 1(c)). We consider the following analytical
solutions for the temperature and the normal heat flux

uðanÞðxÞ ¼ x1x2, x¼ ðx1,x2ÞAO, ð31aÞ

and

qðanÞðxÞ ¼ x2n1ðxÞþx1n2ðxÞ, x¼ ðx1,x2ÞA@O, ð31bÞ

respectively, in the epitrochoid O¼ fx¼ ðx1,x2ÞjrðxÞorðyÞ,
yA ½0,2pÞg.

Here rðyÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaþbÞ2�2hðaþbÞcosðay=bÞþh2

q
, where a ¼ 1.0, b

¼ 0.25 and h ¼ 0.125, while G1 ¼ fxA@OjrðxÞ ¼ rðyÞ,yA ½0,3p=2�g
and G2 ¼ fxA@OjrðxÞ ¼ rðyÞ,yAð3p=2,2pÞg.

Example 4 (Doubly connected concave domain with a smooth

boundary, see Fig. 1(d)). We consider the same analytical solutions
for the temperature and the normal heat flux as those corre-
sponding to Example 3 in the annular domain O¼ fx¼
ðx1,x2ÞjrintorðxÞoroutg, where rint¼2.0 and rout¼3.0. Here
G1 ¼ fxA@OjrðxÞ ¼ routg and G2 ¼ fxA@OjrðxÞ ¼ rintg.

The inverse problems investigated in this paper have been
solved using the uniform distribution of both the MFS
boundary collocation points x(i), i ¼ 1, y, N, and the singularities
nðjÞ, j ¼ 1, y, M. Furthermore, the numbers of boundary
collocation points N1 and N2 corresponding to the over-
and under-specified boundaries G1 and G2, respectively, as well
as the distance dS between the physical boundary @O and the
pseudo-boundary @OS on which the singularities are situated,
were set to:
(i)
 N1¼60, N2¼20 and dS¼3.0 for Example 1;

(ii)
 N1 ¼ 97, N2 ¼ 19 and dS ¼ 2.0 in the case of Example 2;
(iii)
 N1¼60, N2¼20 and dS¼4.0 in the case of Example 3; and
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(iv)
 N1¼60 and N2¼40, while dS¼1.0 and dS¼3.0 for the inner
and outer boundaries, respectively, for Example 4.
For all examples analysed herein the number of singularities was
taken to be equal to that of the MFS boundary collocation points, i.e.
M¼N¼N1+N2. Although not presented herein, it is reported that the
numerical results obtained for the unknown temperature and normal
heat flux on the boundary G2 are convergent with respect to
increasing the distance dS between the physical boundary @O and the
pseudo-boundary @OS. However, it should be noted that the value dS

¼ 1.0 was found to be sufficiently large such that any further increase
of the distance between the singularities and the boundary of the
solution domain did not significantly improve the accuracy of the
numerical solutions for the examples tested in this paper.

It is also important to mention that for the inverse problems
investigated in this paper, as well as the alternating iterative
algorithms I and II, the initial guesses q(1) and u(1) for the normal
heat flux and temperature, respectively, were taken to be

qð1ÞðxÞ ¼ 0, xAG2, ð32aÞ

and

uð1ÞðxÞ ¼ 0, xAG2, ð32bÞ

respectively. Moreover, all numerical computations have been
performed in FORTRAN 90 in double precision on a 3.00 GHz Intel
Pentium 4 machine.
6.2. Results obtained with exact data: convergence of the algorithms

If Ni MFS collocation points, fxð‘ÞgNi

‘ ¼ 1, are considered on the
boundary Gi � @O then the root mean square error (RMS error)
associated with the real valued function f ð�Þ : Gi�!R on Gi is
defined by

RMSGi
ðf Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Ni

XNi

‘ ¼ 1

f ðxð‘ÞÞ2

vuut : ð33Þ

In order to investigate the convergence of the algorithm, at each
iteration, kZ1, we evaluate the following accuracy errors
corresponding to the temperature and normal heat flux on the
under-specified boundary, G2, which are defined as relative RMS

errors, i.e.

euðkÞ ¼

RMSG2
ðuð2k�1Þ�uðanÞÞ

RMSG2
ðuðanÞÞ

for the alternating iterative

algorithm with relaxation I,

RMSG2
ðuð2kÞ�uðanÞÞ

RMSG2
ðuðanÞÞ

for the alternating iterative

algorithm with relaxation II,

8>>>>>>>><
>>>>>>>>:

ð34aÞ
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and

eqðkÞ ¼

RMSG2
ðqð2kÞ�qðanÞÞ

RMSG2
ðqðanÞÞ

for the alternating iterative

algorithm with relaxation I,

RMSG2
ðqð2k�1Þ�qðanÞÞ

RMSG2
ðqðanÞÞ

for the alternating iterative

algorithm with relaxation II:

8>>>>>>>><
>>>>>>>>:

ð34bÞ

Here u(2k�1) (u(2k)) and q(2k) (q(2k�1)) are the temperature and
normal heat flux on the boundary G2 retrieved after k iterations
using the alternating iterative algorithm with relaxation I (II),
respectively, with the mention that each iteration consists of
solving two direct well-posed mixed boundary value problems,
namely Eqs. (5a)–(5c) and (7a)–(7c) for the alternating iterative
algorithm with relaxation I (Eqs. (8a)–(8c) and (10a)–(10c) for the
alternating iterative algorithm with relaxation II).

Figs. 2(a) and (b) show, on a logarithmic scale, the accuracy
errors eu and eq, as functions of the number of iterations,
k, obtained using the alternating iterative algorithm I, exact
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Fig. 2. The accuracy errors (a) eu, and (b) eq, as functions of the number of

iterations, k, obtained using the alternating iterative algorithm with relaxation I,

exact Cauchy data on G1 and various values of the relaxation parameter, namely

oAf0:10,0:50,1:00,1:50,1:90g, for Example 1.
Cauchy data and various values of the relaxation parameter o, in
the case of Example 1. It can be seen from these figures that, for all
values of the relaxation parameter used in this paper, both errors
eu and eq keep decreasing until a specific number of iterations,
after which the convergence rate of the aforementioned accuracy
errors becomes very slow so that they reach a plateau. As
expected, for each value of the relaxation parameter employed,
euðkÞoeqðkÞ for all kZ1, i.e. temperatures are more accurate than
normal heat fluxes; also, the larger the parameter o, the lower the
number of iterations and, consequently, computational time are
required for obtaining accurate numerical results for both the
temperature and the normal heat flux on G2. Therefore, choosing
oAð1,2Þ in the alternating iterative algorithms I and II results in a
significant reduction of the number of iterations as compared
with the corresponding original alternating iterative algorithms
proposed by Kozlov et al. [26], i.e. for o¼ 1. Furthermore, it can
also be noticed from Figs. 2(a) and (b) that, for exact Cauchy data
on G1, the errors in the numerical temperature and normal heat
flux retrieved on G2 are also decreasing as o�!2, see e.g. the
results obtained for o¼ 1:90, while both errors eu and eq

corresponding to the numerical solutions for the temperature
and normal heat flux on G2, obtained using values of the
relaxation factor that are not in the vicinity of its maximum
admissible value, have almost the same order of magnitude, see
e.g. the results obtained for oAf0:10,0:50,1:00,1:50}.

The same conclusions can be drawn from Figs. 3(a) and (b),
which illustrate the analytical and numerical temperature and
normal heat flux, respectively, obtained with o¼ 1:90 after
k¼1000 iterations. From Figs. 2 and 3, it can be concluded that
the alternating iterative algorithm with relaxation I described in
Section 3 provides excellent approximations for the unknown
Dirichlet and Neumann data on G2 and is convergent with respect
to increasing the number of iterations, k, if exact Cauchy data
are prescribed on the over-specified boundary G1. Although
not presented, it is reported that similar results have been
obtained for Examples 2–4 and all admissible values of the
relaxation parameter, as well as the alternating iterative algo-
rithm with relaxation II applied to all examples investigated in
this study.
6.3. Regularizing stopping criterion

Once the convergence of the numerical solution to the exact
solution, with respect to number of iterations performed, k, has been
established, we investigate the stability of the numerical solution for
the examples considered. In what follows, the temperature,
ujG1
¼ uðanÞjG1

, and/or the normal heat flux, qjG1
¼ qðanÞjG1

, on the
over-specified boundary have been perturbed as

~ue
jG1
¼ ujG1

þdu, du¼ G05DDFð0,suÞ, su ¼max
G1

juj 	 ðpu=100Þ,

ð35Þ

and

~qe
jG1
¼ qjG1

þdq, dq¼ G05DDFð0,sqÞ, sq ¼max
G1

jqj 	 ðpq=100Þ,

ð36Þ

respectively. Here du and dq are Gaussian random variables with
mean zero and standard deviations su and sq, respectively,
generated by the NAG subroutine G05DDF [46], while pu% and pq%
are the percentages of additive noise included into the input
boundary temperature, ujG1

, and normal heat flux, qjG1
, respectively,

in order to simulate the inherent measurement errors.
The evolution of the accuracy errors, eu and eq, as functions of

the number of iterations, k, obtained using the alternating
iterative algorithm I, pq¼5% noise added into the Neumann data
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on G1 and various values of the relaxation parameter, o, for
Example 1, are displayed, on a logarithmic scale, in Figs. 4(a) and
(b), respectively. From these figures it can be noted that the
number of iterations required for both errors eu and eq to attain
their corresponding minimum values (i.e. to obtain the optimal
numerical solution to the Cauchy problem) decreases with respect
to increasing the value of the relaxation parameter, o. Similar to
the case of exact Cauchy data on G1, both eu and eq are slightly
decreasing as o�!2, see e.g. the results obtained for o¼ 1:80,
while the inaccuracies in the numerical solutions for both the
temperature and normal heat flux on the boundary G1, obtained
using values of the relaxation parameters that are not close to its
maximum admissible value, have almost the same order of
magnitude.

Figs. 5(a) and (b) present, on a logarithmic scale, the accuracy
errors eu and eq, respectively, as functions of the number of
iterations, k, obtained using the alternating iterative algorithm I,
o¼ 1:50 and various levels of Gaussian random noise
puAf1%,5%,10%g added into the temperature data ujG1

, for the
Cauchy problem given by Example 4. From these figures it can be
seen that, for each fixed value of pu, the errors in predicting the
temperature and normal heat flux on the under-specified
boundary G2 decrease up to a certain iteration number and after
that they start increasing. If the iterative process is continued
beyond this point then the numerical solutions lose their
smoothness and become highly oscillatory and unbounded, i.e.
unstable. Therefore, a regularizing stopping criterion must be
used in order to cease the iterative process at the point where the
errors in the numerical solutions start increasing.

To define the stopping criterion required for regularizing/
stabilizing the iterative methods analysed in this paper, after each
iteration, k, we evaluate the following convergence error which is
associated with the temperature on the over-specified boundary,
G1, namely

EðkÞ ¼

RMSG1
ðuð2k�1Þ� ~ueÞ=RMSG1

ð ~ueÞ for the alternating iterative

algorithm with relaxation I,

RMSG1
ðuð2kÞ� ~ueÞ=RMSG1

ð ~ueÞ for the alternating iterative

algorithm with relaxation II:

8>>>><
>>>>:

ð37Þ
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Here u(2k�1) (u(2k)) is the temperature on the boundary G1,
retrieved numerically after k iterations by solving the well-posed
mixed direct boundary value problem (5a)–(5c) [(10a)–(10c)], in
the case of the alternating iterative algorithm I (II), while ~ue is the
perturbed Dirichlet data (boundary temperature) on the over-
specified boundary G1, as given by Eq. (35). This error E should
tend to zero as the sequences fuð2k�1ÞgkZ1 and fuð2kÞgkZ1 tend to
the analytical solution, u(an), in the space H1ðOÞ and hence it is
expected to provide an appropriate stopping criterion. Indeed, if we
investigate the error E obtained at each iteration for Example 4,
using the alternating iterative algorithm I, o¼ 1:50 and various
levels of Gaussian random noise puAf1%,5%,10%g added into the
temperature data ujG1

, we obtain the curves graphically repre-
sented in Fig. 6. By comparing Figs. 5 and 6, it can be noticed that
the convergence error E, as well as the accuracy errors eu and eq,
attain their corresponding minimum at around the same number
of iterations. Therefore, for noisy Cauchy data a natural stopping
criterion ceases the MFS alternating iterative algorithms with
relaxation I and II at the optimal number of iterations, kopt, given by

kopt : EðkoptÞ ¼min
kZ1

EðkÞ: ð38Þ

Although not illustrated, it is important to mention that similar
results and conclusions have been obtained for the other examples
considered and oAð0,2Þ.

As mentioned in the previous section, for exact data the
iterative process is convergent with respect to increasing
the number of iterations, k, since the accuracy errors eu and eq

keep decreasing even after a large number of iterations, see e.g.
Fig. 2 corresponding to Example 1. It should be noted in this case
that a stopping criterion is not necessary since the numerical
solution is convergent with respect to increasing the number of
iterations. However, even in this case the errors E, eu and eq have a
similar behaviour and the error E may be used to stop the iterative
process at the point where the rate of convergence is very small
and no substantial improvement in the numerical solution is
obtained even if the iterative process is continued. Therefore, it
can be concluded that the regularizing stopping criterion (38)
proposed for the alternating iterative algorithms with relaxation I
and II is very efficient in locating the point where the errors start
increasing and the iterative process should be ceased.

6.4. Results obtained with noisy data: stability of the algorithms

Based on the stopping criterion (38) described in Section 6.3,
the analytical and numerical values for the temperature, u, and
normal heat flux, q, on the under-specified boundary G2, obtained
using the alternating iterative algorithm I, o¼ 1:50 and various
levels of noise added into the temperature data on the over-
specified boundary G1, for Example 1, are illustrated in Figs. 7(a)
and (b), respectively. From these figures it can be seen that the
numerical solution is a stable approximation for the exact
solution, free of unbounded and rapid oscillations. It should also
be noted from Figs. 7(a) and (b) that the numerical solution
converges to the exact solution as the level of noise, pu, added into
the input Dirichlet data decreases.

The values of the optimal iteration number, kopt, the corre-
sponding accuracy errors, eu(kopt) and eq(kopt), and the CPU time,
obtained using the alternating iterative algorithm I, the stopping
criterion (38), various levels of noise added into the Dirichlet data
on G1 and various values of the relaxation parameter, oAð0,2Þ, for
the Cauchy problem given by Example 1, are presented in Table 1.
The following major conclusions can be drawn from this table:
(i)
 For all fixed values of the relaxation parameter oAð0,2Þ, both
accuracy errors eu(kopt) and eq(kopt) decrease as pu decreases
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Table 1
The values of the optimal iteration number, kopt, the corresponding accuracy errors,

eu(kopt) and eq(kopt), and the computational time, obtained using the alternating

iterative algorithm I, the regularizing stopping criterion (38), various amounts of

noise added into ujG1
, i.e. pu Af1%,3%,5%g and pq¼0%, and various values for the

relaxation parameter, o, for the Cauchy problem given by Example 1.

o pu (%) pq (%) kopt eu(kopt) eq(kopt) CPU time (s)

0.10 1 0 619 0.54281	10�2 0.92962	10�2 3358.67

3 0 401 0.21528	10�1 0.42797	10�1 2161.21

5 0 288 0.37941	10�1 0.77268	10�1 1521.75

0.50 1 0 486 0.54322	10�2 0.93019	10�2 2638.01

3 0 318 0.21565	10�1 0.42946	10�1 1697.76

5 0 228 0.37961	10�1 0.77372	10�1 1201.70

1.00 1 0 327 0.54264	10�2 0.92927	10�2 1726.57

3 0 212 0.21537	10�1 0.42834	10�1 1122.70

5 0 151 0.37933	10�1 0.77146	10�1 798.75

1.50 1 0 156 0.53938	10�2 0.91168	10�2 826.04

3 0 104 0.21229	10�1 0.41895	10�1 550.37

5 0 94 0.36700	10�1 0.74137	10�1 485.59

1.80 1 0 73 0.36273	10�2 0.53332	10�2 385.53

3 0 33 0.99652	10�2 0.15014	10�1 172.26

5 0 32 0.26705	10�1 0.49883 	10�1 166.85
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(i.e. the algorithm I is stable with respect to decreasing
the level of noise added into the Dirichlet data on G1),
while the optimal number of iterations kopt and, con-
sequently, the CPU time required for the alternating iterative
algorithm I to reach the numerical solutions for the unknown
temperature and normal heat flux on G1 increase as pu

decreases.

(ii)
 For all fixed amounts of noise added into the temperature on

the over-specified boundary G1, puAf1%,3%,5%g, the accu-
racy errors eu(kopt) and eq(kopt), the optimal number of
iterations, kopt and the CPU time required for the alternating
iterative algorithm I to reach the numerical solutions for the
unknown temperature and normal heat flux on G1 decrease as
o�!2, i.e. as more over-relaxation is introduced in the
algorithm I. However, it should be stressed out that the
differences, in terms of accuracy, between the numerical
results for both ujG2

and qjG2
, obtained for various values of

the relaxation parameter, o, are not very significant.
In order to assess the performance of the alternating iterative
algorithm I with under-, no and over-relaxation, we exemplify by
considering Example 1 with pu¼1%: In this case, the CPU times
needed for the alternating iterative algorithm I with o¼ 0:50
(under-relaxation), o¼ 1:00 (no relaxation) and o¼ 1:50 (over-
relaxation) to reach the numerical solutions for the temperature
and normal heat flux on G2 were found to be 2638.01, 1726.57
and 826.04 s, respectively, while the corresponding values for the
optimal iteration number required, kopt, were found to be 486,
327 and 156, respectively. This means that, to attain the
numerical solutions for the unknown Dirichlet and Neumann
data on G2, the alternating iterative algorithm I with over-
relaxation ðo¼ 1:50Þ requires a reduction in the number of
iterations performed and CPU time by approximately 52% and 68%
with respect to those corresponding to the standard iterative
algorithm I as proposed by Kozlov et al. [26], i.e. without
relaxation ðo¼ 1:00Þ, and the alternating iterative algorithm I
with under-relaxation ðo¼ 0:50Þ, respectively.

Similar conclusions to those obtained from Figs. 7(a) and (b)
can be drawn from Figs. 8(a) and (b), which present the numerical
values for the temperature and normal heat flux obtained on the
under-specified boundary G2, in comparison with their analytical
counterparts, using the alternating iterative algorithm I, the
regularizing stopping criterion (38), o¼ 1:50 and various
amounts of noise added into the normal heat flux qjG1

, i.e.
pqAf1%,3%,5%g, for Example 1. By comparing Figs. 7 and 8,
it can be observed that, as expected, the alternating iterative
algorithm I applied to Example 1 is more sensitive to noise added
into the normal heat flux qjG1

than to perturbations of the
temperature ujG1

since the former contains first-order derivatives
of the latter.

Table 2 tabulates the values of the optimal iteration number,
kopt, according to the stopping criterion (38), the corresponding
accuracy errors given by Eqs. (34a)–(34b), and the CPU time,
obtained using the alternating iterative algorithm I, various levels
of noise added into the Neumann data on G1 and various values of
the relaxation parameter, oAð0,2Þ, for the Cauchy problem given
by Example 1. From Tables 1 and 2 it can be noticed that the
sensitivity of the alternating iterative algorithm I with respect to
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Table 2
The values of the optimal iteration number, kopt, the corresponding accuracy errors,

eu(kopt) and eq(kopt), and the computational time, obtained using the alternating

iterative algorithm I, the regularizing stopping criterion (38), various amounts of

noise added into qjG1
, i.e. pu ¼ 0% and pq Af1%,3%,5%g, and various values for the

relaxation parameter, o, for the Cauchy problem given by Example 1.

o pu (%) pq (%) kopt eu(kopt) eq(kopt) CPU time (s)

0.20 0 1 2712 0.17303	10�1 0.36123	10�1 14334.21

0 3 147 0.37652	10�1 0.74374	10�1 778.06

0 5 102 0.51636	10�1 0.10358	100 539.12

0.50 0 1 2256 0.17303	10�1 0.36123	10�1 11969.48

0 3 123 0.37281	10�1 0.73587	10�1 649.92

0 5 86 0.51805	10�1 0.10351	100 453.42

1.00 0 1 1505 0.17303	10�1 0.36123	10�1 7958.92

0 3 82 0.37811	10�1 0.74868	10�1 443.25

0 5 57 0.51531	10�1 0.10367	100 298.96

1.50 0 1 214 0.16612	10�1 0.36080	10�1 1159.87

0 3 42 0.38289	10�1 0.76983	10�1 225.34

0 5 30 0.53806	10�1 0.10899	100 162.28

1.80 0 1 84 0.16609	10�1 0.36073	10�1 450.62

0 3 18 0.39436	10�1 0.82152	10�1 92.65

0 5 17 0.51142	10�1 0.93332	10�1 90.18

Table 3
The values of the optimal iteration number, kopt, the corresponding accuracy

errors, eu(kopt) and eq(kopt), and the computational time, obtained using the

alternating iterative algorithm I, the regularizing stopping criterion (38), various

amounts of noise added into the Cauchy data ujG1
and qjG1

, i.e. pu ,pq Af1%,3%,5%g,

and various values for the relaxation parameter, o, for the Cauchy problem given

by Example 1.

o pu (%) pq (%) kopt eu(kopt) eq(kopt) CPU time (s)

0.50 1 1 1027 0.71000	10�2 0.21665	10�1 5472.79

1 3 185 0.18098	10�1 0.41589	10�1 971.34

1 5 126 0.32464	10�1 0.67204	10�1 660.56

3 1 236 0.13052	10�1 0.30916	10�1 1246.04

3 3 166 0.20953	10�1 0.49745	10�1 868.96

3 5 108 0.37518	10�1 0.70924	10�1 583.56

5 1 208 0.28335	10�1 0.62977	10�1 1091.03

5 3 140 0.32643	10�1 0.60176	10�1 731.10

5 5 90 0.49354	10�1 0.96463	10�1 477.17

1.00 1 1 686 0.71000	10�2 0.21664	10�1 3613.28

1 3 123 0.18121	10�1 0.50124	10�1 652.39

1 5 84 0.32410	10�1 0.67146	10�1 440.59

3 1 157 0.12907	10�1 0.30292	10�1 830.95

3 3 112 0.21329	10�1 0.42030	10�1 585.70

3 5 72 0.37384	10�1 0.70789	10�1 380.37

5 1 139 0.28236	10�1 0.62662	10�1 733.12

5 3 94 0.33087	10�1 0.61075	10�1 491.09

5 5 60 0.49101	10�1 0.96181	10�1 318.57

L. Marin / Engineering Analysis with Boundary Elements 35 (2011) 415–429 425
noisy Dirichlet and Neumann data on G1, for Example 1, results in
the following:
1.50 1 1 345 0.71000	10�2 0.21662	10�1 1830.73

1 3 61 0.18100	10�1 0.49164	10�1 320.32

1 5 42 0.34582	10�1 0.67966	10�1 230.35

(i)
3 1 79 0.12677	10�1 0.29744	10�1 412.71

3 3 56 0.21754	10�1 0.42368	10�1 303.82
More inaccurate numerical results for both ujG2
and qjG2

are
obtained for perturbed normal heat flux on G1 than for noisy
temperature on G1.
3 5 36 0.40714	10�1 0.74853	10�1 187.03
�1 �1
(ii)

5 1 70 0.27742	10 0.61195	10 368.18

5 3 48 0.33571	10�1 0.62095	10�1 250.32

5 5 32 0.51137	10�1 0.99515 	10�1 165.20
The optimal number of iterations kopt and hence the CPU time
required for the alternating iterative algorithm I to reach the
numerical solutions for the unknown temperature and
normal heat flux on G2 for perturbed temperature on G1

are, in general, larger that those corresponding to noisy
normal heat flux on G1.
The same conclusions, as those drawn from Tables 1 and 2,
regarding the stability of the numerical results obtained using the
alternating iterative algorithm I with relaxation with respect to
the level of noise added into the Cauchy data, and the sensitivity
of the optimal number of iterations performed and, consequently,
the CPU time required for the alternating iterative algorithm I to
reach the numerical solutions for the unknown temperature and
normal heat flux on G2, remain valid also if both the Dirichlet and
Neumann data on G1 are perturbed by noise and these are
presented in Table 3. The analytical and numerical values for
the temperature, ujG2

, and normal heat flux, qjG2
, obtained

using the alternating iterative algorithm I, o¼ 1:50 and
pu ¼ pqAf1%,3%,5%g, for Example 1, are shown in Figs. 9(a) and
(b), respectively. We can conclude from these figures that stable
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Table 4
The values of the optimal iteration number, kopt, the corresponding accuracy errors,

eu(kopt) and eq(kopt), and the computational time, obtained using the alternating

iterative algorithm II, the regularizing stopping criterion (38), various amounts of

noise added into ujG1
, i.e. pu Af1%,3%,5%g and pq ¼ 0%, and various values for the

relaxation parameter, o, for the Cauchy problem given by Example 1.

o pu (%) pq (%) kopt eu(kopt) eq(kopt) CPU time (s)

0.10 1 0 623 0.54361	10�2 0.93071	10�2 3362.93

3 0 385 0.22545	10�1 0.45549	10�1 2079.95

5 0 285 0.38194	10�1 0.79425	10�1 1546.75

0.50 1 0 489 0.54413	10�2 0.93141	10�2 2634.54

3 0 303 0.22559	10�1 0.45553	10�1 1639.37

5 0 266 0.38938	10�1 0.79975	10�1 1444.64

1.00 1 0 329 0.54353	10�2 0.93070	10�2 1764.76

3 0 203 0.22568	10�1 0.45621	10�1 1097.26

5 0 151 0.38179	10�1 0.79401	10�1 821.40

1.50 1 0 169 0.54077	10�2 0.92723	10�2 905.82

3 0 109 0.21857	10�1 0.44030	10�1 605.76

5 0 79 0.37893	10�1 0.77958	10�1 400.17

1.80 1 0 44 0.31226	10�2 0.45855	10�2 234.50

3 0 35 0.99887	10�2 0.13793	10�1 186.35

5 0 34 0.26742	10�1 0.51738 	10�1 181.01

Table 5
The values of the optimal iteration number, kopt, the corresponding accuracy errors,

eu(kopt) and eq(kopt), and the computational time, obtained using the alternating

iterative algorithm II, the regularizing stopping criterion (38), various amounts of

noise added into qjG1
, i.e. pu¼0% and pq Af1%,3%,5%g, and various values for the

relaxation parameter, o, for the Cauchy problem given by Example 1.

o pu (%) pq (%) kopt eu(kopt) eq(kopt) CPU time (s)

0.20 0 1 2712 0.17303	10�1 0.36123	10�1 14416.84

0 3 157 0.37734	10�1 0.74557	10�1 858.67

0 5 109 0.52036	10�1 0.10410	100 575.31

0.50 0 1 2265 0.17303	10�1 0.36123	10�1 11879.26

0 3 132 0.37845	10�1 0.74412	10�1 686.39

0 5 92 0.52116	10�1 0.10353	100 484.29

1.00 0 1 1511 0.17303	10�1 0.36123	10�1 8038.51

0 3 88 0.37314	10�1 0.73381	10�1 460.82

0 5 61 0.51861	10�1 0.10322	100 322.15

1.50 0 1 217 0.16612	10�1 0.36080	10�1 1147.50

0 3 45 0.37569	10�1 0.73196	10�1 244.48

0 5 36 0.51668	10�1 0.10092	100 183.39

1.80 0 1 113 0.16612	10�1 0.36080	10�1 596.75

0 3 19 0.41349	10�1 0.82088	10�1 98.28

0 5 18 0.59205	10�1 0.11916	100 95.53
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numerical solutions for the unknown temperature and normal
heat flux on G2, free of unbounded and rapid oscillations, are
obtained also when both the Dirichlet and Neumann data on G1

are noisy.
Accurate, convergent and stable numerical results for both the

temperature and the normal heat flux on G2 have also been
obtained in the case of the Cauchy problem associated with
Example 1, when using the alternating iterative algorithm II,
various values for the relaxation parameter, oAð0,2Þ, and various
amounts of noise added into the Dirichlet or Neumann data on the
over-specified boundary G1. The quantitative results, obtained for
the alternating iterative algorithm II, various values for the
relaxation parameter and various levels of noise added into
the boundary temperature and normal heat flux data on G1, are
tabulated in Tables 4 and 5, respectively, in terms of the optimal
iteration number, kopt, and the accuracy errors, eu(kopt) and
eq(kopt). From these tables one can draw similar conclusions
regarding the sensitivity of the number of iterations performed
and corresponding accuracy errors as functions of the relaxation
parameter to those obtained for the alternating iterative algo-
rithm I and displayed in Tables 1 and 2.

The performance of the alternating iterative algorithm II with
under-, no and over-relaxation is exemplified by considering
Example 1 with pq¼1%: In this case, the CPU times needed for the
alternating iterative algorithm II with o¼ 0:50 (under-relaxa-
tion), o¼ 1:00 (no relaxation) and o¼ 1:50 (over-relaxation) to
reach the numerical solutions for ujG2

and qjG2
were found to be

11879.26, 8038.51 and 1147.50 s, respectively, while the corre-
sponding values for the optimal iteration number required, kopt,
were found to be 2265, 1511 and 217, respectively. This means
that, in order to attain the numerical solutions for the unknown
Dirichlet and Neumann data on G2, the alternating iterative
algorithm II with over-relaxation ðo¼ 1:50Þ requires a reduction
in the number of iterations performed, as well as CPU time, by
approximately 85% and 90% with respect to those corresponding
to the standard iterative algorithm II as proposed by Kozlov et al.
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[26], i.e. without relaxation ðo¼ 1:00Þ, and the alternating
iterative algorithm II with under-relaxation ðo¼ 0:50Þ,
respectively.

The proposed MFS-alternating iterative algorithm I, in con-
junction with the stopping criterion (38), works equally well also
for the Cauchy problem (4a)–(4c) associated with the Laplace
equation in a simply connected convex two-dimensional domain
with a piecewise smooth boundary, such as the rectangle
investigated in Example 2. Figs. 10(a) and (b) show the numerical
results for the temperature and normal heat flux on the boundary
G2, obtained using the stopping criterion (38), M¼N¼116,
o¼ 1:50 and various amounts of noise added into the Neumann
data, namely pqAf1%,3%,5%g, in comparison with their corre-
sponding analytical values, in the case of Example 2.

Similar stable numerical results for both the unknown
temperature, ujG2

, and normal heat flux, qjG2
, which are at the

same time free of unbounded and rapid oscillations, have been
obtained, using the alternating iterative algorithm II, M ¼ N ¼ 80,
o¼ 1:50 and puAf1%,3%,5%g, for the two-dimensional steady-
state isotropic heat conduction Cauchy problem (4a)–(4c) in a
simply connected concave domain with a smooth boundary, such
as the epitrochoid considered in Example 3, and these are
illustrated in Figs. 11(a) and (b), respectively. The same conclu-
sions have been obtained when solving the Cauchy problem (4a)–
(4b) corresponding to the Laplace equation in a doubly connected
concave domain with a smooth boundary, namely the annular
domain considered in Example 4, by employing the alternating
iterative algorithm II, M ¼ N ¼ 100, o¼ 1:50 and noisy Neumann
data ðpqAf1%,5%,10%gÞ, while the analytical and numerical
results for the unknown temperature, ujG2

, and normal heat
flux, qjG2

, are displayed in Figs. 12(a) and (b), respectively.
From the numerical results presented in this section, it can be

concluded that the stopping criterion developed in Section 6.3 has
a regularizing effect and the numerical solution obtained by the
iterative MFS described in this paper is convergent and stable
with respect to increasing the number of MFS boundary colloca-
tion points and decreasing the level of noise added into the
Cauchy input data, respectively.
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7. Conclusions

In this paper, we proposed two algorithms involving the
relaxation of either the given Dirichlet data (temperature) or the
prescribed Neumann data (normal heat flux) on the over-specified
boundary in the case of the alternating iterative algorithm of
Kozlov et al. [26] applied to two-dimensional steady-state
isotropic heat conduction Cauchy problems. The two mixed,
well-posed and direct problems corresponding to each iteration of
the numerical procedure were solved using a meshless method,
namely the MFS, in conjunction with the Tikhonov regularization
method. For each direct problem considered, the optimal value of
the regularization parameter was selected according to the GCV
criterion. An efficient regularizing stopping criterion which ceases
the iterative procedure at the point where the accumulation of
noise becomes dominant and the errors in predicting the exact
solutions increase, was also presented. The MFS-based iterative
algorithms with relaxation were tested for Cauchy problems
associated with the Laplace operator in simply and doubly
connected, convex and concave domains, with smooth or
piecewise smooth boundaries. The numerical results obtained
using these procedures that the proposed methods are consistent,
accurate, convergent with respect to increasing the number of
MFS boundary collocation points and stable with respect to
decreasing the amount of noise added into the Cauchy data. One
possible disadvantage of the MFS-based iterative algorithms is
related to the optimal choice of the regularization parameter
associated with the Tikhonov regularization method which
requires, at each step of the alternating iterative algorithm of
Kozlov et al. [26], additional iterations with respect to the
regularization parameter. However, this inconvenience was over-
come by employing the relaxation procedures presented in this
study, emphasizing at the same time the computational efficiency
of the relaxation procedures applied to the alternating iterative
algorithm of Kozlov et al. [26].
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