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Abstract

A method for solving nonlinear transient inversatheonduction problems is presented. To
overcome the nonlinearity of the problem, not othlg time domain is divided into several

sub-domains, but also the geometrical domain. Bgguan inverse method, the unknown

variables are determined in each sub-domain. Thte felement method (FEM) is used for

the sensitivity analyses in the sub-domains. Thgo$edness of the inverse problem in each
sub-domain is much less than that corresponditiget@riginal domain and hence the inverse
problem is solved efficiently in each sub-domaimréé non-linear transient problems are
analyzed by both the method presented in this papgthe conventional method. According

to the results obtained, it is shown that the pseplodomain decomposition method (DDM) is

more stable, accurate and faster than the convertinethod with a single domain.

Keywords. inverse problem, finite element method (FEM), dam@ecomposition method
(DDM), nonlinear transient heat conduction

1. Introduction

Direct heat conduction problems are concerned thighdetermination of the temperature at
boundary and interior points of a region when tbendin, initial and boundary conditions,
thermo-physical properties, and heat sources an sire specified [1]. However, some of
this information is not available in some cases, @otisequently, an inverse method should
be used to determine the unknowns. The objectivenadrse heat transfer problems is to
determine thermal boundary conditions, thermo-pialsproperties, or intensity of heat
sources, by using the information obtained frompgerature measurements at some sampling
points within the domain or on the boundary. Inedneat conduction problems (IHCPs) have
been widely studied over the past decades, seflefy.

Until now, many exact or approximate analytical9[7and numerical [10-21] methods have
been presented for the solution of IHCPs. Analytstdutions often contain infinite series,
special functions, or eigenvalue problems, andrthemerical evaluation is carried out by
approximation.

The finite element method (FEM) [12-14], the boutydelement method (BEM) [16, 17] and
meshless methods [18-21] are the most importanhadst for the numerical analysis of
direct and inverse engineering problems. The FEM igowerful method, which can be
efficiently used for static, dynamic, linear, anohhinear engineering problems. The BEM is
an attractive method for analyzing problems withatgrnal discretization; however, to solve
some nonlinear or transient problems by this metidrnal cells or nodes should also be
considered [22, 23].

It is very important to reduce the instability cadsy the ill-posedness when dealing with
inverse problems. Over the past few decades, \@arapproaches, such as the Tikhonov



regularization method [10, 24], gradient iteratnegularization [25, 26], the Levenberg—
Marquardt method [27], and the sequential funcBpecification method (SFSM) [11, 28],
have been developed to stabilize numerical inveodations. Moreover, other methods have
also been suggested to solve IHCPs [29-31].

The SFSM was first presented by Beck et al. [11}his method, by using information from
several future time steps, the stability of theerse solution increases and the sensitivity to
measurement errors decreases. The use of futueestips has a good effect on the stability
of the IHCP. Lin et al. [32] presented a modifieejgential method for eliminating the
leading error in order to provide an accurate atable estimation of the solution by
increasing the number of future time steps. TheNbR&s been extensively used in many
studies for solving IHCPs, see, for example, [3B-36

The ill-posed behaviour of inverse problems is megaous for nonlinear problems. Until
now, the time-domain decomposition has been widebd in inverse problems; however, to
our knowledge, the decomposition of the space-domas not been employed yet to analyze
transient IHCPs. In the present study, a new deositipn method for the efficient inverse
analysis of nonlinear transient heat conductiorblemos is presented. The FEM along with
the SFSM are used to estimate the unknown heagdlox a part of boundary of a transient
heat conduction problem with temperature dependkatmal properties. The domain
decomposition method, which is presented in thgepaconverts a difficult inverse problem
into several simpler inverse problems. The origidainain of the problem is divided into
several smaller sub-domains. The geometrical sizer@nlinearity of the problem in each
sub-domain are much less than that corresponditiget@riginal domain. By this approach,
the inverse problem can be efficiently solved inleaub-domain. To show the efficiency of
the proposed method, three inverse nonlinear tahsheat conduction problems are
considered and investigated herein. These probBmanalyzed by both the conventional
and the proposed methods, with a special emphasikeoefficiency, stability, and accuracy
of these methods.

2. Thenonlinear IHCP and formulation

A linear time-dependent inverse problem may beebly considering the entire domain
occupied by the material. However, to solve anilise@onlinear problem, the time-domain is
usually divided into several intervals and the peobis solved using a sequential method.
This approach results in more stability in the psscof the inverse analysis. Until now, the
decomposition of the time-domain has been widelgduby researchers to solve IHCPs.
However, to our knowledge, the decomposition ofspace-domain has not been employed
as yet to analyze transient IHCPs and acceleratprtitess of an inverse analysis.

The inverse analysis of a nonlinear problem is ncoraplicated than that corresponding to a
linear problem. The temperature dependence of ihguimysical properties in an IHCP makes
the problem more difficult for the stable detectiohunknown boundary conditions. This
issue is more important when the geometrical dinoessof the problem are large and, in
addition, the measurement points are far from tiagdgessible boundary where the boundary
conditions are unknown. In such cases, a largerbeurof iterations are necessary to carry
out the inverse analysis. On the other hand, inesq@roblems with severe nonlinear
behaviours, the inverse analysis may even divdrgéie present study, not only the time-
domain, but also the space-domain is divided ieteesal sub-domains to solve the inverse
problem in order to overcome the aforementioneficdifies.

Fig. 1a shows the geometry of the problem consttérethe domainQ . In this case, the
initial conditions are given, while the boundarynddions are partially defined. The parts of
the boundary with known boundary conditions aredaigd by, . A part of the boundary
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on which the boundary condition (heat flux) is uowm is denoted byr,. The boundary

condition on a part of the boundary is over-deterdj e.g. the boundary heat flux is known
and the temperature at several sampling pointfisrpart of the boundary is also measured.
This portion of the boundary is denoted By. It is assumed that there dreampling points

on I, andJ points with unknown heat fluxes dn,. It is also assumed that< | . The aim
of the problem is to find the heat fluxratime steps at thépoints onl,.

Fig. 1: a) Geometry of the problem witlsampling points andlunknowns. b) Decomposition of the
main domain intdN sub-domains.

The vector of measured valu&s,and the vector of unknowng, are defined as follows:

Y, Yia

v="2l yalYel @
Y Y,
a, A

q=1 2t q-= del )
a, G

In Eq. (1),Y;, represents the measured temperature athttsampling point, whileg, , from

Eq. (2) is the unknown heat flux at thth point onl,. The inverse analysis consists of the
following steps:

Step 1: The original domairQ is divided intoN sub-domains Q,, Q,,---, Q) as shown in
Fig. 1b. T, is a part of the boundary of the first sub-dom&p and the boundary of)
containsl,. A part of the boundary of the domaéd, which is common folQ, and Q, is
denoted by, . Similarly, I,,, 5, ..., [\, are defined (Fig. 1.b).
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Sep 2: The problem inQ, can be considered as a complete inverse problenvhich the
boundaryl, is over-determined anfl,, is the boundary with the unknown conditions. This

inverse problem is much simpler than the originakrse problem in the domaf@ because
the distance betweeh, and I, is less than that betwee,, =, and I,. This inverse

problem is solved to find the essential and natiiwaindary conditions ofi,, atn time-steps.

Sep 3: The inverse problem i, is then solved. In this sub-problerf,, is the over-
determined boundary arfd,, is the boundary with the unknown boundary condgio

Sep 4. Similarly, the inverse problem is sequentiallyved in the next sub-domains. After
solving the inverse problem i@, the unknowns o, =, are found.

The details of the inverse analysis in a sub-doraggrdescribed in the following section.

3. Theinverse analysisin a sub-domain
In this section, the formulation of the inverselgsia in a sub-domain is presented. A general
sub-domain ,) is shown in Fig. 2. It is assumed that the boupdmnditions on the

boundariesl’, are known and the essential and natural boundarglitons on the boundary
[ «-nu have been found in the previous inverse analystbe sub-domair®2, ;. Therefore,
the boundaryl", ,, is considered as an over-determined boundary Wimpling points,
while I, represents a part of the boundary witmknown heat fluxes.

1

r(k-l)u

Fig. 2: A general sub-domain.

Suppose that this inverse problem has been analyge timet, , and the temperature
distribution within the domainQ, has been found at the preceding time steps
t=t,t,,---,t,,. The objective is to obtain the heat flux vectarlq, for the new time step
t=t,. To do this and according to the sequential mettfoBeck [11],r future time steps
(including t =t_,) are considered; however, only the results comedimg to time step,, are
required. The other{1) future time steps are considered for a bettdilgy and accuracy of



the inverse analysis. The vector of the known teatpees at points onl",_,,, for r time

steps is denoted by® and can be expressed as
Y(k):[Yl(k) Y& Yl‘k)JT, Yi(k):lYi,(rl;) y®o L y® JT 3)

i,m+1 i,m+r-1

The vector of unknown values of flux &points onl,, afterr time steps is represented by
q™ and can be expressed as

a¥=[g® a¥ - q¥]"  q¥=[g% 9% - gL (@)
The Tikhonov regularization method is used to fthd vectorq™ . For this purpose, one
defines the following functio®

S= (Y(k) _T(k))T (Y(k) — T(k)) + ,u[q"‘)]T q(k) (5)
where the vecto " contains the temperature valued gbints on [y, afterr time steps

computed by considering a direct problem @df . The vectorT™® is expressed as
CETIR U T S IR TR O LR

i,m+r=1
The first term in Eq. (5) is used to make the défee between the vecto™ and T®
small. The second term in Eq. (5) is used to pretlemcomponents of the vectgf® from
having large values. Small values of the reguléiongparameter: lead to oscillatory results
in some cases. Increasing the valuetofreduces the oscillations; however, the difference
between the measured and computed values of theetatare at sampling points increases.
To find the unknown vectoq , the functiorSis minimized, i.e.

0S

——==2XT(YO -TO)+2q® =0 7)
aq( )
The matrixX in Eq. (7) is referred to as the sensitivity maamd this can be expressed as
X11 X12 Xla
X — x:21 X22 . (8)
X 11 X 1J
where each element &fis a triangular matrix given by
- oT d
Lm 0 0
oq;
aTl m+1 aTl m+1 :
xij = aqj,m aqj,m+1 - (9)
: 0
aTi,m+r—1 aTi,m+r—1
L acIj,m aqj,m«kr—l_

The unknown vectog™® can be found using Eq. (7) via an iterative procedSuppose that

vector g is a guess for the heat flux vector amd” is its corresponding temperature
vector. The temperature vector can be approximaggsesented as

T =T® +X(q® -g®) (10)
By substituting Eq. (10) into Eq. (7) and after goalgebraic manipulations, the following
eqguation is obtained:

q® =[x x+ 1 PlxT (v - T )+ x7x g (12)



Eq. (11) should be used in an iterative proceduotk therefore, it is better to be written in the
following form

(v+1) ®_w © 77T W v) M W W
(@ = Gor i || &y [y =@l a@» | a2
where ) and {+1) represent the current and new iterations, wds@dy. The sensitivity

coefficients appearing in the present formulatian be approximated by a finite difference
as follows:

Tom| Tim|
a-rivml - DMy + e b

q;
& (13)
aqj,mz éqjvmz

where € is a small value. The valge= 0001is further used in this study, while the
convergence criterion employed herein is given by

(v+1) (v)
(T -MY|<e (14)

wheree is a specified tolerance, which is selected baseithe measurement error.

4. Pre- and post-analysis smoothing

Inverse problems are usually sensitive to inputadat. a small perturbation of the
measurement data may cause severe fluctuationseimesults. As a physical reality, we
expect the temperature to be smooth over a smoath gf the boundary. However,
measurement errors cause some fluctuations in gasuned temperature. On the other hand,
sometimes there exists an oscillation in the coegbuteat flux. It is clear that smoothing
(filtering) the measurement data and the resultthefinverse problem would be useful. In
this work, the vector of measured temperaturesisashed before the main inverse analysis.
This operation is also known and referred to asgmadysis smoothing. The computed vector
of heat fluxes is also smoothed after the mainmswwanalysis and this is referred to as post-
analysis smoothing. For carrying out the pre- awmdtqanalysis smoothing, the method
presented in [37] is used.

Suppose thaV is a known vector withN,, oscillatory elements and’ is the corresponding

smoothed vector with the same number of elemertighns to be found. The vect' can
be found using the following relationship [37]

V' =(S'S)'S'K (15)
where
) < =lo]
S= , K= (16)
| yH 0
and
0 0 0 0 O]
1 -2 1 0 O
H=0 1 -2 1 O a7)
O 0 1 -21
O 0 0 O O

Herel is the identity matrix anqzl_is a smoothing parameter with the usual valug8.& 5].
In general, matrixd in Eq. (16) is aN, x N, square matrix; note that matrkk in Eq. (17)



was written for N, =5. It can be shown that summing up the elements of
vectorsV andV'leads one to the same result [21].

5. The FEM formulation of the nonlinear transient heat conduction
For the sensitivity analysis, a large number okdlirnonlinear transient heat conduction
problems should be solved. The FEM, which is a pawenethod for solving nonlinear
problems, is used for this purpose.
The nonlinear transient heat conduction equatiorafbomogenous medium without domain
heat sources may be recast as

oT (x,t)

0k(M)OT (x,1)) = pT)C(T) =,

whereT represents the temperatukas the temperature-dependent thermal conductiwity,
the density and is the temperature-dependent heat capacity pemass.
The initial and boundary conditions for Eq. (182 given by

(18)

T(x,0) =T, (x) in the domaifQ),

T=T on the boundaries with essentiabdoon,
-k(OT)=q on the boundaries with natural condition,
—k(OT ) = h(T - Tw) on the boundaries with convective condition,

wheren is the outward unit normal vector to the bounddgyis the initial temperatureT is
the prescribed temperature on the bounddyy,s the applied normal heat flux to the
boundary, whileh and T, are the convective heat transfer coefficient amel ambient
temperature, respectively.
The spatial domain is discretized using quadriddt®nite elements. The analysis in the time
domain is carried out using the finite differencethod. On using the conventional finite
element procedure [38], the following system ofa@uns is obtained:

CT+KT=F (19)
where C, K, and T are the capacitance matrix, stiffness matrix agmperature vector,
respectively. It should be mentioned that time\dgives in Eq. (19) are approximated using
the Crank-Nicolson finite difference scheme [38].

6. Examples

To show the efficiency of the proposed method, éhimgverse nonlinear transient heat
conduction problems are analyzed by both the cdiomal domain method (CDM) and the
domain decomposition method (DDM) presented in gaper. The accuracy of the results,
CPU time required for these methods and stabilftyhe proposed method for different
aspect ratios of the domain are also investigatedthe analysis of the examples considered
herein, a few MATLAB codes have been developed ramdon a system with an Intel (R)
Coré™ 2 Duo CPU T9300.

6.1. Example 1: A highly nonlinear IHCP

In this example, a square domain made of silicorassidered (Fig. 3a). The thermo-
physical properties of silicon are highly temperatdependent, which makes the problem a
highly nonlinear IHCP. Variations of the specifieat and thermal conductivity of silicon are
shown in Fig. 4. The body is initially at the unifo temperatureT, =15C and then is

subject to a time- and space-dependent heat flutsampper edge, while the lower edge is



subject to a free convection condition with theasiion coefficienth =10W/m?K and the

ambient temperaturd, =15C. The vertical sides are insulated. The aim of itheerse
problem is to determine the unknown heat fluXx,t), on the upper edge, for the time
interval 0 <t < 25200sec, by using the temperature history at 8 pointshenlbwer edge. To
do this, the upper boundary of the domain is didid®#o 6 segments with unknown heat
fluxes. The inverse problem is first solved oves @ntire original domain. Then, the same
problem is solved by decomposing the domain integlsub-domains as shown in Fig 3b.

=9
sub-domain 3
o o)
& L
= < :
1.5m = é sub-domain 2
k= =
EREERS 1}:‘... w....éiii FoRREEED
h=10 ; Te=15 measurement points
I1.5m

Fig. 3: a) Geometry and boundary conditions ofgtablem. b) Decomposition of the original domain
into three sub-domains, each of them containingfb@ elements.

200 1000

160 —=71800

120 = Thermal conductivity 600
Specific heat -———-

o}
(=

400

Specific heat (J/kg K )

B
(=]

200

Thermal conductivity (W/mK)

(=]

200 400 600 800 1000 1200
Temp (C)

Fig. 4: Thermo-physical properties of silicon.

Measured data are simulated by solving a direcblpro and adding random errors (up to
2°C) to the exact results. Therefore, a direct probleith the following time- and space-
dependent heat flux on the upper edge in the iatdérg t < 25200sec is solved

q(x,t) =10000+ 90000x —30000x* + 0.5t (20)
It is important to mention that 12 time steps hbgen considered in the inverse analysis. The
measured data have been firstly smoothed (pre-sisadynoothing) and then used for the

inverse analysis. The original exact temperatutes,simulated measured temperatures and
the smoothed temperatures at the first time stepr@asented in Fig. 5.



—Exact temperature

«=Measured temperature

26 | -=Smoothed temperature

1 2 3 4 5 6 7
Sampling point number

Fig. 5: Exact, measured and smoothed temperatttie first time step.

The inverse analysis was carried out using bothGbBb®& and the proposed DDM. Future
time steps have also been considered for thesenwtbods. The DDM with only two future
time steps  =2) gives satisfactory solutions, while the CDM witho future time steps

(r =2) diverges after three time steps. The CDM witle fiuture time stepsr(=5) diverges
after 10 time steps too. The results obtained uiege methods for the time steps 5 and 10
are shown in Fig. 6. The variations of the heak ffu x = 1125m with respect to time,
obtained by the CDM and DDM, are depicted in Fig. 7

a
) 100
90
~ 80
PE 70 EEEEEEEEEEN
E 60 —Exact solution
= 50
= = CDM (r=5)
= 40
§ 30 o DDM (r=2)
= 20
10
0
0.00 0.22 044 066 0.88 1.10 1.32
Distance along the upper edge (m)
b
) 100
a" "a,
80 fuy gu s
— l......l
E 60
5 40 P —Exact solution
E f = CDM (r=5)
: . o DDM (r=2)
S |
== =

-20

000 022 044 066 08 110 132
Distance along the upper edge (m)
Fig. 6: Results for the heat flux on the upper ealgg) time step 5, and b) time step 10.
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=

70

68
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Time step

Fig. 7: Results for the time dependent heat fuk.125, on the upper edge of the domain.

The accuracy of the methods has also been invesdig@o do this, the error of the solution
is defined as
exact

Error——ZZ‘qJS B

s=1 j=1 qmax
whered is the number of points with unknown heat fldkis the number of total time steps
in the inverse problemg; . and qexacr are the estimated and exact heat fluxes at pant

(21)

time steps, respectively, andg,,,, is the maximum value of the heat flux at time stephe

CPU times and errors of these two methods aredtduliin Table 1. As can be seen from this
table, the DDM with a lower number of future timegs produces numerical solutions that
are more accurate than those corresponding to B @ith a high number of future time
steps. Moreover, the DDM requires a lower CPU tihan the CDM.

Table 1: The computational time and error of theéhods for the square shown in Fig. 3a.

Method of Computational time
. : Error
solution (min)
_ 150
COM (r =5) (for 10 time steps) 0.075
DDM (r =2) 15 0.021
(3 sub-domains)| (for 12 time steps) '

6.2. Example 2: Effects of the aspect ratio and the number of sub-domains

In this example, to study the effects of the aspatd of the problem domain, three domains
with three different aspect ratios, namely 1, Aid 2, respectively, are considered (Fig. 8).
The effects of the number of sub-domains on theiraoy and stability of the numerical
results obtained are also investigated.
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a) q(x,t)=? b) q(x,t)=? 0 ) q(x,t)=?

1 (m)

Insulated
Insulated

h=10; To=15
1.0 (m)

h=10 ; T»=15
1.0 (m)

h=10 ; Te= 15
1.0 (m)
Fig. 8: Geometry of the problem and boundary cimuakit with the aspect ratios a) 1, b) 1.5, and c) 2.

The thermo-physical properties of the material asred in this example are presented in
Table 2. The initial condition and boundary coralis on all sides except the upper one are
assumed the same as those considered in Exampleeltime- and space-dependent heat
flux on the upper edge is unknown. The lower edgih@® domain is subject to a prescribed
convection condition. Moreover, the temperatur@ points on the lower edge is also known
(measured data). Similar to the previous exampkeeasured data are simulated by solving
a direct problem. For this purpose, a direct pnoblgith the following time- and space-
dependent heat flux on the upper edge in the iat€rg t <12000secis solved

q(x,t) = 210000x — 70000x? + 05t (22)
The measurement error simulation and pre-analys@othing are carried out similar to the
previous example.

Table2: Thermo-physical properties of the materaaisidered.
Temperature (K)) 300, 100( 1700
K (W/m.K) 285 145 5
Cp (J/kg.K) 800 800 800
p (kg/m3) 2330| 2330| 233(

In the first case, the square shown in Fig. 8a whthaspect ratio 1 is analysed and 12 time
steps are considered. The inverse analysis isedaotit three times, using the CDM with a
single future time informatiorr£€1), the CDM withr=4, and the DDM with 2 sub-domains
andr=1. The WDM with one future time information divesyafter 7 time steps. The results
obtained for the heat flux on the upper side ofdtyeare using these methods at time steps 5
and 12 are shown in Fig. 9. The variations of teatlilux at pointx = 0.75mwith respect to
time, obtained by the CDM and DDM, are shown in.Hif. The computational time and
error of the three methods are given in Table 3c#s be seen from these figures, the DDM
with one future time information gives a satisfagtsolution. Moreover, the DDM requires a
lower computational time and gives solutions thratraore accurate in comparison with the
CDM.
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Fig. 9: Results for the heat flux over the uppageedf the square shown in Fig. 8a at a) time step 5
and b) time step 12.

200
180
160
140
120 gty
100
80

60
20 —Exact solution CDM (r=1)

= CDM (r=4) o DDM (r=1)

Heat flux (kW/m?)

20

1 3 5 7 9 11
Time step

Fig. 10: Results for the time dependent heat flotaimed ak=0.75, on the upper edge of the square
shown in Fig. 8a (aspect ratio =1).
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Table 3: The computational time and error of théhoes for the square shown in Fig. 8a.

Method of Computational time
: . Error
solution (min)
_ 5.3
CDM (r=1) (for 7 time steps) 0.086
_ 22.2
CDM (r=4) (for 12 time steps) 0.052
DDM (r=1) 2.1 0.032
(2 sub-domains) (for 12 time steps) '

Next, the rectangle shown in Fig. 8b with the aspatio 1.5 is considered. In this case, the
distance between the over-determined boundary (ledge) and the boundary with an
unknown heat flux (upper edge) is lager than infits¢ case. The inverse analysis is carried
out three times, using the CDM witk4, the DDM with 2 sub-domains amdl, and the
DDM with 3 sub-domains and=1. The conventional domain method withl diverges after

7 time steps. The results for the heat flux onupper side of the rectangle, obtained using
the aforementioned three methods at time stepseSshown in Fig. 11. The variations with
respect to time of the heat flux at poixt 0.75m obtained using the CDM and DDM are
shown in Fig. 12. As can be seen form Figs. 11 Badthe DDM with one future time
information gives satisfactory solution. The congiainal time and error of these methods
are presented in Table 4. The numerical resultailoéd in this case show that the DDM is
more efficient than the CDM. Moreover, it should heticed that the DDM with 3 sub-
domains provides us with numerical solutions tha&t more accurate in comparison with
those retrieved using the DDM with 2 sub-domains.

= 100
80

= CDM (r=4)
DDM with 2 sub-d. (r=1)
o DDM with 3 sub-d. (r=1)

Heat flux (kW
& 8

20

0.00 0.22 0.44 0.67 0.89

Distance along the upper edge (m)
Fig. 11: Results for the heat flux on the uppereedithe rectangle shown in Fig. 8b, at time step 5
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Fig. 12: Results for the time dependent heat flux=8.75, on the upper edge of the rectangle shown
in Fig. 8b (aspect ratio =1.5)

Table 4: The computational time and error of théhoés for the rectangle shown in Fig. 8b.
Computational

Method of solution . ; Error
time (min)
coM =) 45.3 0.164
DDM (r=1)
(2 sub-domains) 3.2 0.085
DDM (r=1)
(3 sub-domains) 2.5 0.028

In the third case, the rectangle shown in Fig. &b whe aspect ratio 2 is considered. The
inverse analysis is carried out three times, usigCDM withr=4, the DDM with 2 sub-
domains and=1, and the DDM with 3 sub-domains arwdl. The DDM with 2 sub-domains
andr=1 diverges after 9 time steps. However, the DDNhV@ sub-domains and-1 gives
stable results. The numerical results obtainedther heat flux on the upper side of the
rectangle at time steps 5 and 12 using these meti@dpresented in Fig. 13. The variations
of the heat flux at poink = 0.75mwith respect to time, obtained by the CDM and Ddvk
shown in Fig. 14. The computational time and eafothe methods retrieved in this case are
tabulated in Table 5. The numerical results obthfiee this example show that decomposing
the domain into several sub-domains in the invarsdysis not only increases the accuracy
and stability of the analysis, but also reducesctireesponding computational time.
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Fig. 13: Results for the heat flux on the uppereedfgthe rectangle shown in Fig. 8c at a) time Step
and b) time step 12.

0.44 0.67 0.89

—Exact Heat Flux = CDM (r=4)

Heat flux (kW/m?)

DDM with 2 sub-d. (r=1) o DDM with 3 sub-d. (r=1)

1 3 5 7 9
Time step

Fig. 14: Results for the time dependent heat flux=Q.75, on the upper edge of the rectangle shown
in Fig. 8c (aspect ratio =2).
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Table 5: The computational time and error of théhoes for the rectangle shown in Fig. 8c.

Method of solution Co_mputat_|onal Error
time (min)
80.2

CDM (r=4) (for 12 time steps 0.224
DDM (r=1) 10 .1 0.149

(2 sub-domains) | (for 9 time steps) '
DDM (r=1) 9.3 0.039

(3 sub-domains) | (for 12 time steps '

16




6.3. Example 3: Effects of measurement error
In this example, to study the effects of the mearment error on the accuracy and
computational time of the results, two differenses with measurement errors up to 1°C and
5°C are considered, respectively. A Gaussian Hidion is considered to simulate the errors
in the measurements made.
The geometry, material properties, initial conditiand boundary conditions on all sides
except the upper one are assumed the same asuexsén example 1. Similar to previous
examples, the lower edge of the square is ovemueéied, i.e. the edge is subject to a known
convection condition and the temperature at sew®ntp on the lower edge is also known
(measured data). The measured data are simulatexsbltaymg a direct problem with the
following time- and space-dependent heat flux enupper edge

q(x,t) = 21000 —140000¢* + 05t , 0<t<24000sec (23)
In the inverse problem, the time- and space-depgndeat flux on the upper edge is
unknown. The heat flux has an ascending-descemtistigbution over the upper edge.
The inverse analyses are carried out using the QM r=4 and the DDM with 3 sub-
domains and=1. It should be mentioned that the solution ol#dinsing the CDM witlh=1
is not stable and diverges after a few time st€ps.results for the heat flux on the upper side
of the square, obtained using these two methotimatsteps 4 and 8, and with 1°C and 5°C
measurement errors, are shown in Figs. 15 andespectively. The variations of the heat
flux at points x= 0.75m and x= 1.5mwith respect to time, obtained using the CDM and
DDM for the aforementioned cases, are shown in Eigsand 18, respectively, while the
corresponding error and computational time arergiuel ables 6 and 7, respectively.
As can be seen form Figs.15-18 and Tables 6 anthe/,DDM with one future time
information gives satisfactory solution in all cas&oreover, the DDM requires a lower
computational time and provides us with numericdlutsons that are more accurate than
those retrieved using the CDM.

17



D N
o O o

—Exact solution

40 °
30 f = CDM (r=4) OX

20 7°7°DDM(r=1)A
10 +/

000 023 046 069 092 115 1.38
Distance along the upper edge (m)

N
o o

[e2]
o

—Exact solution

= CDM (r=4) °\;
o DDM (r=1)

0.00 0.23 0.46 0.69 0.92 1.15 1.38
Distance along the upper edge (m)
Fig. 15: Results for the heat flux on the uppereedithe square (example 3) with C
measurement errait a) time step 4, and b) time step 8.
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Fig. 16: Results for the heat flux on the uppereedigthe square (example 3) wih C
measurement errait a) time step 4, and b) time step 8.
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Fig. 17: Results for the time dependent heat fler ahe upper edge of the square (example 3) with
1° C measuremeiat a)x=0.75, and bx=1.5.

20



[
N

~
o

[e2])
o

wv
o

—Exact solution

Heat flux (kW/m?2)
Eay
o

= CDM (r=4)
30
o DDM (r=1)
20
10 ° (]
o
) o o o ° ° °
0
1 3 5 7 9
Time step
b
)100
90 []
80 ——v o5 o = °
& °
E 70 e
560 e
= 0 —Exact solution
= 40
= = CDM (r=4)
= 30
2 —_
= 20 o DDM (r=1)
10
0
1 3 5 7 9
Time step

Fig. 18: Results for the time dependent heat fiuthe upper edge of the square (example 3) With
C measuremert a)x=0.75, and bx=1.5.

Table 6: The computational time and error of thethoés used in example 31¢ C
measurement error).

Method of Computational
i i ; Error
solution time (min)
CDM (r=4) 240 0.167
DDM (r=1)
(3 sub-domains 27.2 0.032

Table 7: The computational time and error of thethoés used in example 35¢ C

measurement EI’I'OI').

Method of Computational £
i i ; rror
solution time (min)
CDM (r=4) 290 576
DDM (r=1)
(3 sub-domains 27.6 0.062

7. Conclusions

In this paper, a stable numerical method for theerise analysis of nonlinear transient heat
conduction problems was presented. The idea opithypposed method is to split the original
domain of the problem into a few sub-domains anaved the given inverse problem into
several simpler problems.
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The efficiency and accuracy of the method wereistlithrough several numerical examples.
According to the results obtained and presentedimethe following major conclusions can
be drawn:

1. The need for additional future time steps in theMDi3 less than that in the CDM. In
general, the DDM provides one with stable and fatiery numerical solutions with one
future time information only.

2. For a specific problem, the increase in the nundbesub-domains implies a decrease in
the computational time required to solve the pnobl&his is due to a smaller number of
future time steps to be considered in the DDM asdjaificant decrease in the number of
iterations required at each time step in the DDNhwilarger number of sub-domains.

3. The distance between the over- and under-deternfioeddaries becomes smaller in the
DDM. As a consequence, the ill-posedness of thergesproblem in each sub-domain of
the DDM is less than that corresponding to the risweproblem associated with the
original domain. Therefore, a lower value of thgularization parameter in the DDM can
be considered. In other words, for a specific pgobl increasing the number of sub-
domains actually increases the accuracy of thdtsesu

4. When the distance between the over- and underrdeted boundaries is large, a higher
number of sub-domains should be considered in B order to obtain a sufficiently
accurate and stable solution.
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