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Original Article

Determination of optimum cooling
conditions for continuous casting by
a meshless method

A Khosravifard1, MR Hematiyan1 and L Marin2,3

Abstract

An inverse technique based methodology for the optimal control of the solidification front motion in the continuous

casting of pure metals with temperature-dependent material properties is proposed. In this method, to achieve specific

mechanical and metallurgical properties of the final product, a predefined motion of the solidification front is selected.

A history of the heat flux on the fixed boundaries of the problem is then computed, which would result in an actual

motion of the solidification front representing the best match for the desired one. A sensitivity analysis of the inverse

problem is efficiently carried out by a truly meshless method. The proposed inverse technique is applied for the design of

the continuous casting of pure metals with temperature-dependent thermo-physical properties. The efficiency of the

proposed method is demonstrated through some numerical examples.
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Introduction

The continuous casting process is a means of produc-
tion of high-quality metals and alloys in a cost-
efficient manner. The continuous casting process
allows for low-cost production of metal ingots
because of the inherently lower costs of continuous
production. If judiciously designed, the process also
provides great control over the quality of final prod-
ucts. Considerable increase in yield, generation of uni-
form products, energy efficiency, and higher
manpower productivity are the main advantages of
continuous casting.1 The continuous casting process
is most commonly used for the production of steel, as
well as aluminum and copper.

When dealing with the numerical modeling of the
continuous casting process, there are two distinct
classes of problems. In the first class, the governing
equation of solidification is solved directly based on
the known initial and boundary conditions. The aim
of this type of problem is to obtain the temperature
distribution in the solidifying part during the process,
as well as the time-dependent location of the solid–
liquid interface. Such problems are known as direct
solidification problems. In the second class, either
the location of the solidifying front or the cooling
conditions are sought based on temperature measure-
ments,2,3 or an optimum boundary cooling condition
is sought for obtaining a prescribed motion of the

solidification front.4 These problems are known as
inverse solidification problems.

Since the governing equation of solidification is
non-linear, for most practical situations, it is difficult
or even impossible to obtain closed-form analytical
solutions. Consequently, computational methods
have been widely used for the analysis of direct as
well as inverse casting problems. Weckman and
Niessen5 utilized the finite element method (FEM)
to solve the steady-state thermal problem associated
with the continuous casting of A6063 aluminum cylin-
drical ingots. Their method allows for the calculation
of effective heat transfer coefficients on the boundaries
of the ingot. In order to obtain the temperature dis-
tribution in the strand, based on the known bound-
ary conditions on the strand surface in a continuous
casting process, Laitinen and Neittaanmäki6 used the
enthalpy formulation along with the FEM. Modeling
of the heat flow in the continuous casting process by
the finite difference method (FDM) has been
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performed by Lally et al.7 Their model includes non-
linear thermodynamic and transport properties of the
medium. Theodorakakos and Bergeles8 solved the
steady-state Navier–Stokes equations by the FDM
to model the flow of steel in a continuous casting pro-
cess. Their method was aimed at the understanding of
the free wave and the interface surface wave behavior
of the flow. Fic et al.9 used the boundary element
method (BEM) for the analysis of the phase change
heat transfer in the strand during continuous casting.
Their method is applicable to the continuous casting
of pure materials since it is assumed that the phase
change is isothermal.

Ha et al.10 conducted a numerical simulation study
on the molten steel in a continuous casting process in
the presence of electromagnetic fields. By solving the
three-dimensional (3D) mass, momentum, and energy
conservation equations, along with Maxwell’s equa-
tions for the electromagnetic field coupled with a
flow field, they investigated the effect of the magnetic
field on the turbulent flow field, heat transfer, and sol-
idification phenomena. Risso et al.11 evaluated the
thermal stresses and plastic strains in the solid shell
at the initial stage of a steel continuous casting
process.

Recently, mesh-free methods have also been used
successfully for the analysis of heat transfer12,13 and
solidification problems.14 Being independent of a pre-
defined mesh of elements, mesh-free methods are well
suited for the analysis of moving boundary14 and
large deformation problems.15 Zhang et al.14 applied
the finite point method (FPM) to model metal solidi-
fication process in continuous casting, at the same
time using the enthalpy method to account for the
latent heat effects. Zhang et al.16 simulated the solidi-
fication process and the thermal stress of continuous
casting billet in mold by an integrated thermo-
mechanical meshless analysis. They used the FPM
for the thermal part of the simulation and the mesh-
less local Petrov–Galerkin method for the elastic–
plastic part. Ko et al.17 established a 3D numerical
model for the analysis of the thermal behavior of
copper molds in the continuous casting process.

Numerical methods have also been used for the
inverse analysis of the continuous casting process.
Based on a non-linear constrained optimization tech-
nique, Engl and Langthaler18 computed the values of
the external cooling and also the casting speed to
obtain a desirable solidification front. Binder et al.19

used temperature measurements during the secondary
cooling of steel in continuous slab casting for deter-
mination of the solidification front position. They also
determined a cooling strategy that leads to a pre-
scribed solidification front. Hill and Wu20 also used
inverse techniques for the determination of the solidi-
fication front in the continuous casting of steel. They
used integral formulations to establish a so-called nor-
malized pseudo-steady-state temperature as an upper
bound to the normalized actual temperature. By this

approach, an upper bound for the solidification front
position was obtained. Grever et al.21 determined a
cooling strategy for the continuous casting process
which insures that the final solidification takes place
within the ‘soft-reduction’ zone and reformulated the
problem of finding an appropriate cooling strategy as
a finite-dimensional non-linear optimization problem.
Nowak et al.22 used temperature measurements in the
solid phase and sensitivity coefficients for the predic-
tion of the interface location in the continuous casting
process and formulated the problem as an inverse geo-
metrical thermal problem using the BEM. Cheung
and Garcia23 used an artificial intelligence heuristic
search method along with a numerical heat transfer
model to find optimized cooling conditions, which
results in defect-free billet production with a min-
imum metallurgical length.

Later, Nowak et al.24 used the Bezier curves to
model the interface between the solid and liquid
phases and formulated a geometrical inverse problem
for the identification of the phase change front in con-
tinuous casting. In this study, the influence of the
measurement errors on the accuracy of the phase
change front location was determined. Santos
et al.25 developed a computational algorithm aimed
at controlling the quality of steel billets produced by
continuous casting using a genetic search algorithm
and a knowledge base of operational parameters for
selection of a set of cooling conditions in order to
attain highest product quality. A 3D numerical solu-
tion of the inverse boundary problem for the continu-
ous casting of alloys was presented by Nowak et al.26

The objective of their work was to estimate the heat
fluxes on the external boundaries of the ingot based
on temperature measurements. Slota27 solved an
inverse Stefan problem for the reconstruction of the
function describing the boundary conditions along the
primary and secondary cooling zones in the 2D and
3D continuous casting of pure metals. In the numer-
ical calculations, the Tikhonov regularization method
and a genetic algorithm were used. Nowak et al.2 have
presented a numerical solution for the inverse bound-
ary problem in a continuous casting of an aluminum
alloy. Recently, Slota3 proposed a method for the
retrieval of heat fluxes and heat transfer coefficient
in the continuous casting of pure metals based on
temperature measurements. Fazeli and Mirzaei28

have conducted a comparative survey on the methods
used for the identification of the solid–liquid interface
in a cold storage system. By measuring the tempera-
ture on the outer surface of the storage, the shape of
the interface was estimated in Fazeli and Mirzaei.28

The inverse solidification problem that is dealt with
in this study is considered as a design problem. It
should be mentioned that, in some inverse solidifica-
tion problems, the objective is to retrieve the existing
cooling conditions or the solidification front position
based on temperature measurements. However, the
objective of some other inverse problems, which are

2 Proc IMechE Part C: J Mechanical Engineering Science 0(0)

 by M. R. Hematiyan on August 16, 2012pic.sagepub.comDownloaded from 

http://pic.sagepub.com/


XML Template (2012) [6.8.2012–1:09pm] [1–14]
{SAGE}PIC/PIC 457325.3d (PIC) [PREPRINTER stage]

considered as design problems, is to calculate an opti-
mum history of the heat flux distribution on the
boundaries of the problem to achieve a predefined
morphology of the solidification front.

The inverse approach used in this article for
obtaining an optimum heat flux history is based on
the so-called pseudo-heat source method. In this
approach, for modeling the solidification process,
the governing equations of heat conduction are uti-
lized. However, in order to account for the liberation
of latent heat, an imaginary heat source near the sol-
idification front is considered. Consideration of the
pseudo-heat source in this method is the key differ-
ence of this approach with respect to those used by
other researchers. Using this approach, the inverse
problem can be tackled much easier and more effi-
ciently.29 This article is a continuation of the previous
study of the authors4 with an emphasis on the applic-
ability of the design process. The key contribution of
this study is that the temperature dependence of the
casting thermo-physical properties is taken into
account. Also, the design of an important production
process is considered in detail. Several various situ-
ations for the continuous casting of iron are investi-
gated through numerical examples, while very good
results are obtained. In both the previous papers that
utilize the pseudo-heat source method, i.e.
Khosravifard and Hematiyan4 and Hematiyan and
Karami,29 although acceptable results were obtained,
the thermo-physical properties of the medium are
considered to be temperature independent. In this art-
icle, all thermo-physical properties of the medium are
considered temperature dependent, which makes the
inverse problem much more difficult. This broadens
the area of applicability of the proposed method. It
should be emphasized that taking into account the
temperature dependence of the material properties
imposes a great non-linearity on the inverse problem
and new strategies should be utilized for obtaining a
stable solution. Such strategies are further discussed
in detail herein.

Various numerical methods can be used for the
sensitivity analysis of the problem. As mentioned pre-
viously, the FEM and BEM have been used for this
purpose. However, utilization of the meshless meth-
ods for the sensitivity analysis of non-linear problems
can be beneficial. Meshless methods were introduced
in the mid 1990s and are still being an active research
area in engineering and sciences.30–32 It is known that
the modeling of temperature-dependent material
properties using the BEM is cumbersome. The FEM
faces some difficulties when modeling abrupt changes
in the material properties, which occur on the sides of
the solidification front. However, mesh-free methods
can easily deal with temperature-dependent material
properties. Additionally, due to their good interpol-
ation characteristics, modeling abrupt changes in the
material properties can be performed with acceptable
accuracy. The sensitivity analysis of the inverse

method proposed in this article is performed by a
truly meshless method, i.e. the meshless improved
radial point interpolation method or simply the
IRPIM.13 In this method, the Cartesian transform-
ation method (CTM) is used for the meshless evalu-
ation of domain integrals. The meshless IRPIM is a
suitable tool for the analysis of non-linear transient
problems.13 Since the sensitivity analysis used in this
article is based on the solution of several non-linear
transient problems, the IRPIM is an appropriate tool
for this purpose.

Mathematical model of the continuous
casting process

Figure 1 is a schematic representation of the continu-
ous casting process. The process consists of several
stages. In the first stage, the liquid metal is poured
into a chilled mold and a thin solid shell is produced.
In the next stage, the metal is further cooled by a
direct spray of water and the thickness of the solidi-
fied shell is increased. Finally, the solidified metal is
flame cut and cooled to room temperature.

Continuous casting: The direct problem

The objective of a direct continuous casting problem
is determination of the temperature distribution in the
metal during the process, as well as the time-
dependent location of the solidification front. Figure
2 depicts the problem geometry and boundary condi-
tions associated with a typical continuous casting pro-
cess. Due to the symmetry of the problem, only a
quarter of the problem domain is required to be mod-
eled. The mathematical model of the continuous cast-
ing process is governed by the general heat conduction
equation with an internal heat generation source to
account for the liberation of latent heat25

�ðTÞcðTÞ
@T

@t
¼ r kðTÞrTð Þ þ g xð Þ ð1Þ

where � is the mass density, c the specific heat, k the
thermal conductivity, T the temperature, and g the
heat generation source per unit volume. The initial
and boundary conditions for equation (1) associated
with a continuous casting process are as follows:

T x, 0ð Þ ¼ Ti, in the problem domain

qðx, tÞ ¼ �qj ðx, tÞ, j ¼ 1, 2

qðx, tÞ ¼ 0, on the insulated boundaries

Continuous casting: The inverse problem

The objective of the inverse continuous casting pro-
cess followed in this article is the determination of a

Khosravifard et al. 3
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heat flux history that would result in a predefined
motion of the solidification front. More specifically,
the time-dependent position of the solidification front
is selected based on a desired motion path and vel-
ocity of the front. Then, an optimization problem is
defined in which the objective function is the tempera-
ture difference between the actual and the desired
problems at the predefined position of the solidifica-
tion front. The unknown heat fluxes on the bound-
aries of the problem are independent variables of the
objective function. The minimization of the objective
function gives specific heat fluxes that lead to a
motion of the solidification front which is as close
as possible to the desired motion.

Problem statement and formulation. A domain which is
initially occupied by a liquid metal at T5Tm is con-
sidered, where Tm is the melting point of the metal
(Figure 3). At time t ¼ 0, a part of the domain bound-
ary is cooled, causing the initiation of the solidifica-
tion process. This part of the boundary is denoted by
Dq, while the remaining boundary, on which pre-
scribed boundary conditions are applied, is denoted
by Dp. As the solidification process starts, a moving
boundary �IðtÞ is formed, which separates the

solidified part of the domain �s from the liquid part
�l. We assume that the desired position of the moving
boundary, i.e. the solidification front, is predefined at
(Nþ 1) discrete instances of time ti, i ¼ 0, 1, . . . ,N.
To this end, the value of the heat flux at Nq points
on the boundary Dq should be evaluated. This is

Figure 1. Schematic representation of the continuous casting process.

Figure 2. Model of a typical continuous casting process.

Figure 3. Terminology of the inverse continuous casting

process.

4 Proc IMechE Part C: J Mechanical Engineering Science 0(0)
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accomplished by minimizing the temperature differ-
ence between J sampling points on the moving bound-
ary and the desired temperature, i.e. Tm.

To obtain the numerical formulation of the inverse
problem, we suppose that M steps of the problem
analysis are performed, i.e. the heat fluxes and the
temperature distribution within the domain at time
instances ti, i ¼ 0, 1, . . . ,M are evaluated. Now, the
values of the heat fluxes at Nq points on the boundary
�q ¼ �1

q þ �2
q are sought. These values cause the

moving boundary to advance from its position at
time t ¼ tM to a new position at t ¼ tMþ1, i.e.
�IðtMþ1Þ. That part of the domain which is solidified
during one time step of the problem is termed as the
transition zone and is denoted by �T. It should be
highlighted that the transition zone is not a physical
domain that exists in the casting. This zone represents
the amount of matter that is solidified during each
time step of the analysis of the problem. In fact, this
zone is a predefined design factor. For computational
purposes, a vector qB is defined, which contains the
values of the heat fluxes to be evaluated, namely

qB ¼ q1 q2 q3 � � � qNq

� �T
ð2Þ

To account for the effects of the latent heat, a
pseudo-heat source is placed in the transition zone.
At each time step of the analysis, it is assumed that
the heat source is uniformly distributed in the transi-
tion zone. The role of this heat source is to provide as
much heat to the domain as it is released when the
amount of the material contained in �T is solidified.
The intensity of this heat source per time per unit
volume is obtained as

g ¼
mL

V�t
¼
�L

�t
ð3Þ

where m and V are the mass and volume of the mate-
rial contained in the transition zone, respectively, L
the latent heat of solidification, � the mass density and
�t ¼ tMþ1 � tM.

Based on an initial guess for the vector qB and the
temperature distribution at time t ¼ tM as initial con-
dition, the values of the temperature at J sampling
points at time t ¼ tMþ1 are calculated. The calculated
values of the temperature at these sampling points are
collected in a vector denoted by T. Since we wish the
location of the sampling points and that of the solidi-
fication front to coincide, the temperature at the sam-
pling points should be as close as possible to the
melting temperature of the metal. To achieve this
goal mathematically, a vector Y, whose values are
equal to Tm, is formed. Consequently, one obtains
an objective function defined as the norm of the
vector given by the difference between T and Y. The
design variables of this objective function are
the unknown heat fluxes on the boundary. Since the
main difficulty with all types of inverse problems is

their ill-posedness, the number of measurements
should be greater than the number of unknown
design variables, that is J4Nq. In this way, the prob-
lem becomes over-determined and the chances to find
a physically meaningful solution increase. However,
the results may be oscillatory and usually the addition
of a regularization term to the objective function is
necessary to improve the stability of the inverse algo-
rithm. Consequently, the objective function is
defined as

S ¼ Y� TðqBÞ
� �T

Y� TðqBÞ
� �

þ �qTBqB ð4Þ

where � is the regularization parameter. The method
used for the definition of the objective function in this
study is most commonly known as the Tikhonov
regularization method. The vectors Y and T in equa-
tion (4) contain the desired and estimated values
of the temperature at the sampling points, respect-
ively, i.e.

Y ¼

Tm

Tm

Tm

..

.

Tm

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

J�1

, T ¼

T1

T2

T3

..

.

TJ

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

ð5Þ

The first term on the right-hand side of equation
(4) guarantees a solution that results in the minimum
difference between the estimated and desired tempera-
tures at the sampling points, while the second term
damps the oscillations of the elements of the vector
qB. The vector of heat fluxes that minimizes the
objective function is obtained by minimizing the func-
tional (4), i.e.

@S

@qB
¼ �2X Y� TðqBÞ

� �
þ 2�qB ¼ 0 ð6Þ

The matrix X in equation (6) is referred to as the
sensitivity matrix. The elements of this matrix are the
derivatives of the estimated temperatures at the sam-
pling points with respect to the estimated and then
evaluated values of the design variable, i.e. the elem-
ents of the vector qB. The matrix X is defined by

X ¼

X11 X12 � � � X1Nq

X21 X22 � � � X2Nq

..

. ..
. . .

. ..
.

XJ1 XJ2 � � � XJNq

2
6666664

3
7777775

ð7Þ

where

Xrs ¼
@Tr

@qs
ð8Þ

Khosravifard et al. 5
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In order to solve equation (6) for the vector qB, an
expression for the vector T as a function of qB should
be provided. Such an expression can be obtained by
using a few terms of Taylor series expansion of the
vector T in a neighborhood of the vector ~qB

TðqBÞ ¼
~Tþ X qB � ~qB

� �
ð9Þ

where ~T is a vector whose elements are the tempera-
ture values at the sampling points when the vector of
heat fluxes ~qB is applied on the boundary Dq.
Substituting equation (9) into equation (6) and after
some arithmetic manipulations, the vector qB is
obtained in the following form

qB ¼ XTXþ �I
� ��1

XTðY� ~TÞ þ XTX~qB
� �

ð10Þ

Since in this study the thermo-physical properties
of the medium are considered to be temperature
dependent, the expression obtained for qB should be
used iteratively until a convergence criterion is satis-
fied. An equivalent expression for qB, which is more
suitable for iterative calculations, can be written as
follows

qkþ1B ¼ Xk
� �T

Xkþ�kI
h i�1

Xk
� �T

ðY�TkÞþ Xk
� �T

XkqkB

h i

ð11Þ

where the superscript k refers to the iteration number.
In order to use equation (11), the vector of heat fluxes
obtained at the preceding time step is used as the ini-
tial guess. Also, the temperature-dependent thermo-
physical properties of the metal are computed based
on the temperature distribution at the preceding time
step. Equation (11) is repeatedly used until a conver-
gence criterion is fulfilled. In this study, the following
criterion is used

kqkþ1B � qkBk4" ð12Þ

Here, the values of " in equation (12) are selected
according to a desired accuracy.

Selection of the optimal regularization parameter. The
appropriate selection of the regularization parameter
is of crucial importance when dealing with inverse
problems. Low values of the regularization parameter
will result in a heat flux vector with a large norm.
Generally, this means that the elements of the heat
flux vary severely over the boundary Dq. On the
other hand, large values of � will result in a large
difference between the values of the desired and eval-
uated temperatures at the sampling points.
Consequently, there should be a compromise between
the loss of accuracy and oscillatory solutions. The
L-curve method33 is a well-known heuristic criterion
for the selection of the optimal value for �. Herein,
another method is used for the selection of the

regularization parameter. In the method presented
herein, the optimal value for � is selected such that
the difference between the desired and evaluated tem-
peratures at the sampling points would be bounded.
More precisely, the following formulation is used

el4RMS Tðqkþ1B Þ � Y
� �

4eu ð13Þ

where el and eu are specified lower and upper bounds,
respectively, for the difference between the desired and
estimated temperatures. Equation (13) implies that a
new value of the regularization parameter is selected
at each iteration of the problem analysis. For prob-
lems in which a physically feasible pattern for the
motion of the solidification front is desired, smaller
values of these bounds can be selected. In contrast, for
problems in which the desired motion of the solidifi-
cation front is physically impossible, larger values of
these bound should be selected. Based on our numer-
ical experiences, for physically feasible motions, the
error bounds can be selected around 0.001–0.005
(0.1–0.5%), while for physically impossible design
objectives, the aforementioned bounds should be
larger. In such cases, a suitable value of � for which
reasonably smooth results are obtained is selected
according to the amount by which the desired
motion violates the governing equations. In general,
the designer might have to select the error bounds
based on their engineering judgment and/or a trial
and error procedure.

RMS in equation (13) refers to the root mean
square function, which for a vector V of length n is
defined as

RMSðVÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
V2

i

	 

=n

r
ð14Þ

By substituting equation (9) into equation (13), the
criterion for the selection of the regularization param-
eter reads as follows

el4RMS Tk þ XKðqkþ1B � qkBÞ � Y
� �

4eu ð15Þ

Sensitivity analysis. There are generally two different
methods for computing the sensitivity coefficients in
equation (8). The first one is based on the direct dif-
ferentiation of the governing equation with respect to
the unknown heat fluxes. In the second method,
the finite difference technique is used for the calcula-
tion of the derivatives. The former technique is faster,
however computationally more complex. In the latter
method, which is used in this article, a typical sensi-
tivity element of the matrix X is obtained according to
the following expression

Xrs ¼
@Tr

@qs
¼

Tr q1, q2, . . . , ð1þ �Þqs, . . . , qNq

� �
�Tr q1, q2, . . . , qs, . . . , qNq

� �
�qs

ð16Þ

6 Proc IMechE Part C: J Mechanical Engineering Science 0(0)
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where � is a small number, say 0.01. It should be men-
tioned that once a reasonably small value for � is
selected, the results are not sensitive to the particular
choice of � because the behavior of the problem will
be approximately linear with this small change in the
heat flux.

Secondary regularization. At each time step of the
inverse problem analysis, the regularization parameter
� is used for the reduction of the spatial oscillations in
the heat fluxes. However, the heat flux vector may
have strong oscillations with respect to time, which
makes it difficult to apply the retrieved fluxes in an
actual casting process. In this study, a so-called sec-
ondary regularization is used to overcome this diffi-
culty, aiming at the reduction of the temporal
variations of the calculated heat flux vector.

Suppose that V is a vector with oscillatory elem-
ents. In order to find a vector V0 as close as possible to
V, but with non-oscillatory elements, one can minim-
ize the following expression

R ¼
Xn
i¼1

Vi � V0i
� �2

þ �
Xn�1
i¼2

V0iþ1 � 2V0i þ V0i�1
� �2

ð17Þ

where n is the number of elements of the vector V and
� the regularization parameter, whose value can be
adjusted to eliminate oscillations as much as required.
In general, choosing � 2 0:5, 5½ � leads to acceptable
results. The minimization of R is equivalent to the
minimization of expression jSV0 � K j, where

S ¼
I

�H

� �
, K ¼

V

0

 �
ð18Þ

with I as the identity matrix and

H ¼

0 0 0 0 0

1 �2 1 0 0

0 1 �2 1 0

0 0 1 �2 1

0 0 0 0 0

2
66666664

3
77777775

ð19Þ

Generally, the matrix H in equation (19) is an n� n
matrix; however, here this is written for n ¼ 5.

The minimization of R with respect to the elements
of the vector V results in the following relation for the
vector V0

V0 ¼ STS
� ��1

STK ð20Þ

The benefit of the vector expression given in equa-
tion (20) for the vector V0 is twofold. First, a vector is
obtained with elements that are non-oscillatory.
Second, the sums of the elements of vectors V and

V0 are identical.4 This means that for the problem
considered herein, both vectors impose the same
amount of energy to the problem domain.

Determination of an appropriate vector of initial

guesses. The use of equation (11) for the evaluation
of the vector of heat fluxes requires an initial guess for
the first iteration, i.e. q0B. For the time steps other than
the first one, the distribution of heat fluxes obtained
in the preceding time step is used as the initial guess.
For the first time step, a simple balance of energy can
be used for obtaining an initial guess. Since most of
the heat extracted from the material in the first time
step is due to the latent heat effects, a uniformly dis-
tributed heat flux vector which extracts the same
amount of energy from the medium can be calculated
as an initial guess, i.e.

q0B ¼
mL

l��t

mL

l��t
� � �

mL

l��t

� �T
ð21Þ

where m is the mass of the metal contained in the first
transition zone, L the latent heat of solidification, �t
the time duration of the first time step, and l� the
length of the boundary Dq. Since the shape of the
transition zone is known a priori, the volume and,
therefore, the mass of the metal encompassed in
each transition zone can be computed without any
difficulty.

The meshless RPIM

In the past decade, the rapid development of the pro-
cessing capabilities of computers resulted in the emer-
gence of new computational techniques with
interestingly new abilities. Meshless methods are
rather new techniques, built on the idea of reducing
or eliminating the need for a predefined mesh during
the numerical analysis of problems. These methods
have shown great potential for the analysis of prob-
lems, for which severe issues occur because of the dis-
tortion of the elements or re-meshing processes when
analyzed by mesh-based methods. For instance, mesh-
less methods are promising for the numerical analysis
of large deformation and metal forming processes,15

moving and free boundary,14 and shape optimization
problems.34

In this study, the meshless RPIM is used for the
sensitivity analysis. In addition, to improve the accur-
acy and efficiency of the RPIM, a meshless integration
technique, namely the CTM, is used for evaluating the
domain integrals in the formulation of the RPIM.
Khosravifard et al.13 have shown that the IRPIM is
well suited for the analysis of non-linear transient
problems. Since the sensitivity analysis of this study
requires the solution of several non-linear transient
heat transfer problems, the meshless IRPIM is utilized
for this purpose.
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The CTM for meshless evaluation of domain
integrals

To improve the capability of the BEM for the treat-
ment of domain integrals, Hematiyan35,36 proposed
an integration technique, namely the CTM. The
CTM was originally used for the transformation of
domain integrals in the BEM into boundary integrals.
The BEM along with the CTM has been efficiently
used for the analysis of heat transfer problems37 as
well as thermo-elasticity with non-uniform heat
sources.38 The modified version of the CTM has
been successfully applied for the meshless evaluation
of domain integrals in mesh-free methods.13,39 Bui
et al.40 have found the CTM highly appropriate for
the evaluation of domain integrals in mesh-free
methods.

In the IRPIM, the CTM is applied for the evalu-
ation of domain integrals. In the CTM, the evaluation
of a domain integral is performed by the dot product
of a vector collecting the values of the integrand at the
integration points and a vector containing the CTM
integration weights, i.e.

I ¼

Z
�

f ðxÞd� ffi
XN
i¼1

WCTM
i fi ¼ FTWCTM ð22Þ

where N is the number of CTM integration points for
the domain � and WCTM

i the value of the CTM inte-
gration weight corresponding to the ith integration
point. In equation (22), fi ¼ f xið Þ with xi the position
of the ith integration point. The CTM introduces a
systematic procedure for finding the position of the
integration points and the associated integration
weights without any domain discretization.39

Formulation of the IRPIM

In the conventional RPIM, radial and polynomial
basis functions are used for the interpolation of a scat-
tered set of data.41 Suppose that the values of a func-
tion f(x) are known at a scattered set of nodes
xj, j ¼ 1, 2, . . . ,m. The RPIM can be used for inter-
polating this set of data to obtain an approximate
value for f at any point of interest x, i.e.

f ðxÞ ¼
Xn
i¼1

�iðxÞ f xið Þ ¼ (
TF ð23Þ

where �i is the shape function of the ith node and n
the number of nodes in the support domain of point
x. The support domain of any point is a domain in the
vicinity of that point which contains the nodes used
for the interpolation of data.

In order to obtain a discretized form of the gov-
erning equation of solidification, equation (1), the
interpolation of equation (23) is used. On using
the interpolated form of the temperature function in

the associated Galerkin weak-form, a discretized
matrix equation of the following form is obtained

MðTÞ _Tþ KðTÞT ¼ F ð24Þ

where T is a vector collecting the nodal values of the
temperature within the domain and

MijðTÞ ¼

Z
�

�ðTÞcðTÞ�i�j d� ð25Þ

KijðTÞ ¼

Z
�

kðTÞ �i, x�j, x þ �i, y�j, y
� �

d� ð26Þ

Fi ¼

Z
�

gðxÞ�i d��

Z
�q

�q�i d� ð27Þ

where �i and �j are the RPIM shape functions at
nodes i and j, respectively. Equation (24) can be
solved by using any well-known time marching
scheme, such as the Crank–Nicholson method.
However, since the thermo-physical properties of the
metal are temperature dependent in this study, matri-
ces K and M used to obtain the temperature distribu-
tion, depend themselves on the temperature
distribution. Consequently, an iterative procedure
should be utilized to obtain the temperature within
the domain.

In the conventional meshless RPIM, the domain
integrals in equations (25) to (27) are evaluated with
a background mesh. To improve the accuracy and
computational efficiency of the meshless method, we
use the CTM for the evaluation of these domain inte-
grals. Khosravifard et al.13 have given detailed expres-
sions for the evaluation of the domain integrals in
the IRPIM.

Numerical examples

In this section, the proposed inverse technique is
applied to the design of a continuous casting process.
Several predefined motions of the solidification front
are considered and heat fluxes are obtained accord-
ingly. Finally, the computed heat fluxes are used in a
direct analysis by the FEM software package ANSYS
and the position of the solidification front based on
the evaluated heat flux history is obtained. In this
way, the accuracy of the results obtained by the pro-
posed inverse analysis can be assessed.

A continuous casting process is designed, for which
the dimension of the section of the casting is 0.30�
0.2m2. However, as explained in ‘Mathematical
model of the continuous casting process’ section,
only a quarter of the section needs to be modeled.
Figure 4(a) depicts the problem geometry and
boundary conditions. The configuration of the 70
nodes used in the meshless analysis is also shown
in Figure 4(b).
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The objective of the design is to obtain a heat flux
history that would result in a uniform movement of
the solidification front parallel to the fixed boundaries
of the domain. Three different cases are studied by the
examples considered herein. In the first, second, and
third cases, the fluxes are obtained such that 75%,
84%, and 96% of the liquid metal are solidified
during a specific time interval. The effect of the sol-
idification time on the distribution of heat fluxes is
studied in each case. Figure 5 shows the desired
motion of the solidification front for each case con-
sidered. The dashed lines in this figure represent the
desired position of the solidification front at some
instances of time.

In each case, for the determination of q1 and q2, the
upper and right boundaries are divided into six and
four segments, respectively. The heat flux at each time
step is considered to be constant on each boundary
segment. This makes a total of 10 unknown boundary
heat fluxes at each time step of the inverse analysis.
Also, 20 sampling points are selected at the desired
position of the solidification front at each time step.

The predefined motion of the solidification front is
physically impossible; this is due to sharp corners in
the desired shape of the solidification front. However,
the inverse technique finds a heat flux history that best
matches the desired motion. After obtaining a heat
flux history for each case, the secondary regulariza-
tion is performed to damp the temporal oscillations of
the results. The value of the regularization parameter
�, in all cases, is between 0.3 and 1.2.

In all cases considered, calculations are performed
for pure iron, for which the melting temperature is
1809K and the latent heat of solidification is 246 kJ/
kg. The pouring temperature is assumed to be 1900K.
The temperature-dependent thermo-physical proper-
ties of iron are given in Table 1. The densities of
liquid and solid iron used in this article are 7800
and 7900 kg/m3, respectively.

Case I: 75% of the casting is solidified

In this case, it is desired that 75% of the liquid metal
is solidified after a predefined time from the beginning

Figure 4. (a) The problem geometry and boundary conditions and (b) nodal arrangement of the IRPIM.

Figure 5. The desired motion of the solidification front.

Table 1. Thermo-physical properties of the casting.

T (K) 300 500 700 900 1100 1300 1500 1700 1809– 1809þ 1900

c (J/kg�K) 637 672 701 728 753 633 663 825 838 750 750

k (W/m�K) 80 59 48 37 30 30 32 33 35 39 40
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of the casting process. Also, it is required to evaluate a
specific history of heat fluxes so that the solidification
front would move as depicted in Figure 5. To study
the effect of the solidification time on the intensity of
the heat fluxes, the inverse analysis is performed for
two time durations of 500 and 700 s. Figure 6 plots the
heat fluxes q1 and q2 for these two time durations of
the casting process.

It is observed that by decreasing the solidification
time, the intensity of the heat flux vector increases.
Therefore, for smaller time durations, the temperature
of the solidified material near the boundary Dq lowers
rapidly. The low temperature of the material near the
boundary limits the heat transfer by water sprays. As
a result, the solidification time cannot be smaller than
a specific value. Otherwise, a heat flux with high inten-
sities would be required, which cannot be attained
with water sprays.

Based on the computed values of the heat flux, the
position of the solidification front is obtained by
ANSYS. The obtained and desired front positions
are compared in Figure 7. This figure clearly shows
that an acceptable agreement between the desired and
obtained front positions exists.

Case II: 84% of the casting is solidified

In this case, it is desired that 84% of the liquid metal
be solidified after a predefined time from the

beginning of the casting process. In addition, the
front motion is desired to be as close as possible to
the motion shown in Figure 5. Similar to the previous
case, two different time durations of the casting pro-
cess are chosen and the fluxes are obtained accord-
ingly. Figure 8 plots the evaluated heat fluxes for
time durations of 800 and 1000 s, respectively.

The heat flux histories shown in Figure 8 are used
in a direct analysis using ANSYS and the solidifica-
tion front position at some time instances are
obtained. The obtained and desired solidification
front positions for the time durations of 800 and
1000 s are depicted in Figure 9. A close agreement
between the desired and obtained front positions is
again observed.

Case III: 96% of the casting is solidified

In the last case, it is desired that 96% of the liquid
metal is solidified after a predefined time from the
beginning of the casting process. In addition, the
front motion is desired to be as close as possible to
the motion shown in Figure 5. Two time durations of
1000 and 1200 s are selected for the casting process
and the heat fluxes are obtained accordingly.
Figure 10 shows the heat flux histories on the bound-
ary Dq for the two time durations considered.

Similar to the previous cases investigated, the eval-
uated heat flux histories are used in a direct analysis

Figure 6. Evaluated heat flux history on the boundary for: (a) t¼ 500 s and (b) t¼ 700 s.
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by ANSYS and the solidification front position is
obtained. The actual and desired front positions at
some time instances are plotted in Figure 11.
Although at the end of the process the solidification
front is far away from the boundary Dq and therefore
the control of the front position becomes difficult,
acceptable results are obtained.

To study the effect of the number of time steps of
the inverse analysis on the accuracy of the results, the
analysis is performed once by regarding four time
steps and once by eight time steps. The solidification
fronts obtained from the heat fluxes of each case are
compared in Figure 12. It can be seen from this figure

that increasing the number of time steps improves the
accuracy of the actual front position. However, the
results obtained by four time steps are still
satisfactory.

As explained in ‘Secondary regularization’ section,
a so-called secondary regularization is performed on
the vector of heat fluxes in order to damp the temporal
oscillations of the results. Figure 13 depicts the heat
flux on one segment of the boundary Dq, with and with-
out performing the secondary regularization. This
figure clearly shows how the secondary regularization
employed reduces the oscillations and, consequently,
makes the design process more applicable.

Figure 8. Evaluated heat flux history on the boundary for: (a) t¼ 800 s and (b) t¼ 1000 s.

Figure 7. Solidification front position based on the evaluated heat fluxes for: (a) t¼ 500 s and (b) t¼ 700 s.
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Figure 10. Evaluated heat flux history on the boundary for: (a) t¼ 1000 s and (b) t¼ 1200 s.

Figure 9. Solidification front position based on the evaluated heat fluxes for: (a) t¼ 800 s and (b) t¼ 1000 s.

Figure 11. Solidification front position based on the evaluated heat fluxes for: (a) t¼ 1000 s and (b) t¼ 1200 s.
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Conclusions

In this study, a methodology based on an inverse tech-
nique for the design of the continuous casting process
of pure metals was proposed. This method is based on
a pseudo-heat source which accounts for the liber-
ation of the latent heat during the solidification pro-
cess. By utilizing the pseudo-heat source method, the
inverse solidification problem is transformed into an
inverse heat conduction problem which can be tackled
more efficiently than the original problem. The formu-
lation of the proposed method is made for the case in
which all thermo-physical properties of the medium
are temperature dependent. Therefore, the method is
applicable to the design of actual casting processes
that occur over a large temperature interval. In the
proposed method, first, a desired motion of the sol-
idification front is selected. Then, by the solution of
an optimization problem, specific heat fluxes are
obtained that would result in an actual motion of
the front that best matches the desired one. As an
example, the proposed method was applied for the

design of the continuous casting of iron. The results
obtained for the examples considered herein demon-
strate the great potential of the proposed method for
accurate and efficient design of casting processes.
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