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Abstract. We study the stable reconstruction of the boundary and internal temperatures for two-
dimensional steady-state (an)isotropic heat conduction problems from prescribed noisy Cauchy data
on a part of the boundary. Two MFS-based iterative algorithms involving the relaxation of either the
given boundary temperature (Dirichlet data) or the prescribed normal flux (Neumann data) on the
over-specified boundary are employed.

Mathematical Formulation of the Problem
Consider a bounded Lipschitz domain © C R? occupied by a solid characterised by the homogeneous,
symmetric and positive-definite thermal conductivity tensor K = [Kij] 1< We also assume that
Q is bounded hy a (piecewise) smooth curve 9Q =TI'y U T, where Ty # @, #Fand 1Ny = 2.

Let H!(2) be the Sobolev space of real-valued functions in {2 endowed with the standard norm. We
denote by H}(2) and Hll—\z, (§2), i = 1,2, the subspaces of functions from HY(Q) that vanish on 4% and
Ty, 4=1,2, respectively. Herein, the space HY/2(I';), ¢ = 1,2 is a subset (restrictions to the boundary
T;) of the trace space HY/2(682) (of the Sobolev space H'(f2)). The space Hééz(I‘,;), i =1,2, consists
of functions from HY/2(80) vanishing on s_;, ¢ = 1,2, and (HI(Q))* is the dual space of Hé(/)z(l“i)d,
i = 1,2, with the usual norms.

In this paper, we refer to steady-state heat conduction applications in (an)isotropic homogeneous
media in the absence of heat sources. Consequently, the function u(x) denotes the temperature at a
point x € O and satisfies the heat balance equation [1]

Lu(x)=-V-(KVu(x)) =0, x€Q. ' (1)

Further, we let n(x) be the unit outward normal vector at 9 and q(x) be the normal heat flux at &
point x € §€2 defined by
q(x) = —n{x) - (KVu(x)), x€d0. (2)

If it is possible to measure hoth the temperature and the normal heat flux on a part of the boundary
T, say T';, then this leads to the mathematical formulation of the Cauchy problem consisting of the
partial differential equation (1) and the boundary conditions

u(x) =%(x), a{x)=dlx), xeli, &)
where T € HY%(T';) and G € (Hééz(I‘l ))* are prescribed Dirichlet {temperature) and Neumann {(normal
Leat Aux) conditions, respectively. This problem consisting of (1) and (3), termed the Cauchy problem,
is much more difficult to solve both analytically and numerically than direct problems, since its solution
does not satisfy the general conditions of well-posedness [2].

Alternating Iterative Algorithms with Relaxation

We present two alternating iterative algorithms with relaxation, originally proposed by Jourhmane et
al. [3], which aim at reducing the computational time of the alternating iterative algorithm of Kozlov
et al. [4] for the simultaneous and stable reconstruction of the unknown temperature and normal heat
flux on I's, see also Marin [5, 6].
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,. Alternating iterative algorithm with relaxation I:

‘Step 1. (i) If k = 1. specify an initial guess for the normal heat flux on Ty, i.e. ¢! (Héé:) (Fg))’,
(ii) If k > 2 then solve the following mixed, well-posed, direct problem:

§
i Eu(z"_l}(x) =0, xe, (4a)
:
j a®# V) =g(x), xely, (4b)
2
gL u(ik-ﬁ-l)(x) - u(Qkk?) (XJ , XE€ I‘g . (40)

-~ to determine u®*~U(x), x € Q, and q¥*~(x) = —n(x) - (K Vu*-U(x)), x € Iy,
| Step 2. Update the unknown Neumann data on I's by setting

2k—Thiy for k=1
£ = { a® 1 (x)

; €T, 5
w0+ (1—w)E*(x)  for kz2 @ o ®)

where w € (0,2) is a fixed relaxation factor.
Having constructed the approximation u@*=1, k > 1, the following mixed, well-posed, direct problem:

ﬁu(%)(x) =0, xe€Q, (6a)
uNx) =1(x), xely, (65
q(%)(x) = E,(k](x) y RETH, (6c)

is solved in order to determine ul®*)(x), x € ), and u(®)(x), x € T,
Step 8. Repeat steps 1 and 2 until & prescribed stopping criterion is satisfied.
Alternating iterative algorithm with relaxation II:

Step 1. (i} If k= 1, specify an initial guess for the boundary temperature on Ty, i.e. u® e H”"’(Fg).
(ii) If & > 2 then solve the following mixed, well-posed, direct problem:

LulUe =0, xeq, (7}
u(2k— 1) (x) = ﬁ(x) s X E Pl 3 (Tb)
QD) = @ D(x), xeTy, (7

10 determine u(®~1) (x), x € 0, and u*~1(x), x € I,

Step 2. Update the unknown Dirichlet data on T2 by setting
¥ -

where w € (0,2) is a fixed relaxation factor.
- Having constructed the approximation w1, k > 1, the following mixed, well-posed, direct problem:

u@ 1) (x) for k=1

, €y, 8
wul=1(x) 4 (1 - w) Ppi=l(x) for =2 e &

Lu®(x) =0, xeq, ' (82)
@) =dx), xely, e}
u(x) =P (x), xeTs, B

- Is solved in order to determine u®*)(x), x € ©2, and a®(x) = -n(x) - (K Vu(x)), x € Ty.
L Step 8. Repeat steps 1 and 2 until a prescribed stopping criterion is satisfied.

.. The convergence of the alternating iterative algorithin with relaxation II presented above can be
. Tecast in the following convergence theorem, with the mention that a similar result can also be obtained
for the alternating iterative algorithm with relaxation 1, see also [3, 5, 6]:
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Theorem 1 Letl € HY*(T) andq € (HI/Z(D))*, and assume that the Cauchy problem (1) and (3)
has a solution u € HY(Q). Let uk) be the k-th approzimate solution in the alternating procedure IT
described above. Then there exists a number 1 < b < 2 such that when the relazation parameter w is
chosen with 1 <w < b, then

=0 (10)

Jim [l HHJ(Q)

for any initial dota element (1) € HY2(T).

The proof for this theorem in case of the proposed relaxation algorithins associated with the
Cauchy problem for the steady-state (an)isotropic heat conduction is similar to that for the corre-
sponding relaxation algorithms for the Cauchy problem in elasticity [7). The proof given by Marin
and Johansson [7] is based on the reformulation of the Cauchy problem (1) and (3) as a fixed point
operator equation with a self-adjoint, injective, positive definite and non-expansive operator, while
the scheme is shown to be a fixed point iteration for that equation. An alternative proof for the
convergence result can also be found in [3]. As reported by Marin and Johansson [7] for Cauchy
problems associated with the Navier-Lamé system of elasticity, it was also found for two-dimensional
steady-state (an)isotropic heat conduction Cauchy problems that a relaxation factor w > 2 cannot be
employed since the iterative process becomes divergent in such a situation.

The Method of Fundamental Solutions
The fundamental solution G of the heat balance equation (1) for two-dimensional steady heat con-
duction in (an)isotropic homogeneous media is given by, see e.g. Fairweather and Karageorghis (8]
1 % 1
T
o /ItK  J(x—E) K l(x—&)

G(x, &) = i  xefl, (11)

o hl_m—u——(x—i)-(xéi,)

where & € B?\ 7 is a singularity or source point. The main idea of the method of fundamental
solutions (MFS) consists of the approximation of the temperature in the solution domain by a linear

for anisotropic media

for isotropic media

- combination of fundamental solutions with respect to M singularities {£1) Moo R? \ £, in the form
Bu i=1

uf{x) & uprle, £5x Zc] X, «EU xcQ, (12)
j=l1
where ¢ = [c1,...,cas] and £ € R?M is a vector containing the coordinates of the singularities

{E.U }}M From equations (2) and (11) it follows that the normal heat fiux, through a curve defined
by the outward unit normal vector n(x), can be approximated on the boundary, 88, by

M
ax) & aqurle. E5x) = Y ¢ (—n(x) K VxG{x, aUJ)) . xean. (13)

j=1

Next, we select N; MFS collocation points {x* }>N1 on the boundary I'; and Ny MFS collocation

points {x“"”’”}& on the boundary T'g, such that the total number of MFS collocation points used
to discretise the boundary 8% of the solution domain Q is given by N = Ny + Na. Further, we define
the vectors UY € BN and QU) e RN, j = 1,2, containing the values of the temperature and normal
heat flux, respectively, at the collocation points on the boundary [';, j = 1,2. We also denote by
AW g RNixM gnd BUY) e BNi¥M | § = 1,2, the matrices that determine the MFS approximation of
the temperature and normal heat flux on [';, j = 1,2, respectively. Using these notations, the MFS
discretisation of the Cauchy boundary data (3) and the MFS approximation of the unknown boundary
conditions on Ty are given by the following relations with j = 1 and j = 2. respectively,

AW =Tl BU ¢ = QW (14)
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' Note that all components of the matrices AY), BU), j =1,2, and the vectors UV, QW are known.
At each step of the alternating iterative algorithms with relaxation I and II, two direct mixed well-

.- posed problems are salved using the MFS. The general form of the MFS systems of linear algebraic
.equations associated with these direct problems may be recast as

AP = ang AP M =g, k>1, (15)

.where the superscripts (I) and (II) refer to the alternating iterative algorithms with relaxation I and
“““ 11, respectively, while the subscript k represents the iteration number. Since the direct problems (4)
and (9), and (6) and (7) are of the same kind, but with different right-hand sides. we obtain:

-(i) For problems (4) and (9)

(m an T an_ [Q @
Ay, =4y =[BY AP], £, = [U(EJ } By = -1:(2)] . o k>1 (16)
S LTy

(ii) For problems (6) and (7)

|

fj-(lﬁ 'ﬁ(”
AL A _ AW BOT, (0o [_m] I L ] EBL
= [Qs—

In order to uniquely determine the sclutions CSJ € RM and cgl) € RM to the MFS systems of N
linear algebraic equations with M unknowns given in (15), the numbers of MFS boundary collocation
points and singularities must satisfy the inequality M < N. However, these MFS systems cannot be
solved by direct methods, such as the least-squares method, since such an approach would produce &
highly unstable solution in the case of noisy Cauchy data on I'y. Therefore, the MFS systems of N
linear algebraic equations with M unknowns given in (15) are solved, in a stable manner, by using the
Tikhonov regularization methiod [9], while the optimal value of the regularization parameter is chosen
according to the generalized cross-validation (GCV) criterion [10].

Numerical Results

Example. In the following, we solve the Cauchy problem (1) and (3) for an anisotropic solid
characterised by the thermal conductivity tensor Kq; = 1.0, Kjp = Koy = 0.5, K22 = 1.0 and occupying
the disk 2 = {x € B?| p(x) < 1}, where p(x) = /X] + 3 is the radial polar coordinate of x. The
following analytical solutions for the temperature and normal heat flux are assumed:

B (x) =} gz 433, x={(x,%) e, (18a)
g (x) = 3[rems (%) +Fxina(x)], x = (%1,%2) € O, (18b)

respectively. Here T) = {x € 80 |0 < 0(x) < 3n/2} and [y = {x € 8Q|3n/2 < B(x) < 27}, where
8(x) is the angular polar coordinate of x.
SF In this study, we have adopted the so-called static approach associated with the MFS singularities,
" in the sense that these singularities are preassigned and kept fixed throughout the solution process.
More precisely, the MFS singularities have been taken on the pseudo-boundary (s at the distance
_.ds from the physical boundary Q. The inverse problem considered herein was solved using a uniform
. distribution of both the MFS boundary collocation points {x("‘)}il and the singularities { E,m};'il,
such that Nqi/3 = Na = N/4 = 20, M = N/2 and dg = 3.0. ‘
~ Convergence of the Algorithms. If L; collocation points, {zw}f;l_. are considered on the
- boundary T'; C 80 then the roof mean square error (RMS error) associated with the real valued
o function f(-).: T; — R on T is defined by

RMSr(f) = (19)

4
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In order to analyse the accuracy, convergence and stability of the proposed alternating iterative al-
gorithms with relaxation, for k& > 1, we evaluate the following accuracy errors corresponding to the
temperature and normal heat flux on I's, which are defined as relative RMS errors, i.e.

RMSr, (u) — u(e)

RMSy, (un)
eall) = (20a)
RMSr, (11‘:2“"” - u(ﬂ“))

RMSr, (u®)

for the alternating iterative algorithm with relaxation I

for the alternating iterative algorithm with relaxation II

and

RMSrg (q(Zk—l) . q(au})

(L) Rl\-fSFQ (q[an)} {26}))
eq(k) =
4 Rl\‘ISI‘E (q(Qk) . q(:m))

RMSr, (qi‘ml)

for the alternating iterative algorithm with relaxation T

for the alternating iterative algorithm with relaxation IT.

Here u®) (u(Z*-1) and q®~1 () are the temperature and normal heat flux on the boundary Ty
retrieved after k iterations using the alternating iterative algorithm with relaxation I (IT), respectively.

Although not presented, it is reported that, for all admissible values of the relaxation parameter,
w € (0,2), both accuracy errors ¢, and eq keep decreasing until a specific number of iterations,
after which the convergence rate of the aforementioned errors becomes very slow so that they reach a
plateau. As expected, for each value of w, ey(k) < eq(k) for all k > 1; also, the larger the parameter
w, the lower the number of iterations and, consequently, computational time are required for obtaining
accurate numerical results for both the the temperature and the normal heat flux on I'y.

Regularizing Stopping Criterion. To simulate the inherent inaccuracies in the measured data
on I';, we assume that various levels of Gaussian random noise, py and pg, have been added into the
exact temperature u|F1 = 1 and normal heat flux q‘ri = T data, respectively, so that the following
perturbed temperature and normal heat flux are available on I'y:

i e LA(T) : ““(a.n)irl _ﬁe”L?(rl) =e¢ and g€ L*(I'y) : “q(an)h _a€I]L3(I‘1) = £ (21)

Fig. 1{a) preseuts, on a logarithmic scale, the accuracy error e, as a function of the number of
iterations, k, obtained using the alternating iterative algorithim I, w = 1.50 and p, € {1%, 3%, 5%}.
From this figure it can he seen that, for each fixed value of pg, the errors in predicting the temperature
on the under-specified boundary Ty decrease up to a certain iteration number and after that they
start increasing. Although not illustrated, it is important to mention that the accuracy error eq has a
similar behaviour. If the iterative process is continued beyond this point then the numerical solutions
lose their smoothness and become highly oscillatory and unbounded, i.e. unstable. Therefore, a
regularizing stopping criterion must be used in order to terminate the iterative process at the point
where the errors in the numerical solutions start increasing.

To define the stopping criterion required for regularizing/stabilizing the iterative methods analysed
in this paper, after each iteration, k, we evaluate the following convergence error which is associated
with the temperature on the over-specified boundary, I'1, namely

RMSp, (w1 - T¢)

RMSr, (u¢
) — 1"1( ) (22)
RMSr, (11(2"') - 1°)

RMS, (%)

for the alternating iterative algorithm with relaxation I

for the alternating iterative algorithm with relaxation II.

Here u(Z-1) (u(% )-) is the temperature on the boundary I'y, retrieved numerically after k iterations by
solving the well-posed mixed direct boundary value problem (4a)—(4c) [(9a)-(9c)], in the case of the

w
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(2) Accuracy error eu: pq € {1%, 3%, 5%}, algorithm I {b) Convergence error Eu: pq € {1%, 3%, 5%}, algorithm I

Figure 1: (a) The accuracy errors ey, and (b) the convergence error, E,, as functions of the number
of iterations, %, obtained using the alternating iterative algorithm I, w = 1.50 and various levels of
noise added into q|m.

alternating iterative algorithm I (II), while T is the perturbed Dirichlet data (boundary temperature)
on the over-specified boundary I';, as given by (21). This error E, should tend to zero as the sequences
{u®=1} _ and {u®} _ tend to the analytical solution, u™, in the space H'((2) and hence it is
expected to provide an appropriate stopping criterion. Indeed. if we investigate the error E, obtained
at each iteration using the alternating iterative algorithm I, w = 1.50 and py € {1%,3%.5%}, we
obtain the curves graphically represented in Fig. 1(b). By comparing Figs. 1(a) and (b), it can
be noticed that both the convergence error E, and the accuracy error e, attain their corresponding
minimum at around the same number of iterations. Therefore, for noisy Cauchy data a natural
stopping criterion ferminates the MFS iterative algorithms with relaxation I and II at the optimal
number pf iterations, kopy, given by:

kopt + Eul(kapt) = i Ey(k). (23)

Although not illustrated, it is reported that similar results and conclusions have been obtained for all
admissible values of w, as well as the MFS-based iterative algorithm with relaxation II.

Stability of the Algorithms. Based on the stopping criterion (23), the numerical results for the
temperature and normal heat flux on the under-specified boundary Tz, obtained using the alternating
iterative algorithm I, w = 1.50 and pq € {1%, 3%, 5%}, and their corresponding analytical values are

- presented in Figs. 2(a) and (b), respectively. It can be seen from these figures that the numerical
. :sclutions for both the temperature and the normal heat flux on I's are stable approximation to their
corresponding exact solutions, free of unbounded and rapid escillations, and they converge to the exact
" solutions as pq — 0.
5 The values of the optimal iteration number, kopt, the corresponding accuracy errors, ey(kopt)
and eq(kopt), and the CPU time, obtained using the alternating iterative algorithm I, the stopping
criterion (23), various levels of noise added into the Dirichlet and Neumann data on I'y and various
values of the relaxation parameter, w € (0,2), are presented in Table 1.

In order to assess the performance of the alternating iterative algorithm I with under-, no and
over-relaxation, we exemplify by considering p, = 1% and pq = 0%. In this case, the CPU times
needed for the- alternating iterative algorithm I with w = 0.50 (under-relaxation), w = 1.00 (no
relaxation) and w = 1.50 (over-relaxation) to reach the numerical solutions for the temperature and
mormal heat flux on Ty were found to be 5785.39, 3455.76 and 1674.59 s, respectively, while the
mrrespondmg values for the optimal iteration number required, kopt, were found to be 4136, 2755 and
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W | Py | Pq | kopt eul(kapt) €q(Kopt) CPU time [g]
0.20 | 1% | 0% | 4958 | 0.12065 x 1071 | 0.51310 x 107! 6845.51
3% 0% | 4716 | 0.36192 x 10~ T | 0.15391 x 107 6029.39
5% | 0% | 4483 | 0.60320 x 10T | 0.25652 x 107 5228.04
0.50 | 1% | 0% | 4136 | 0.12065 x 1071 | 0.51310 x 107! 5785.30
3% | 0% | 3934 | 0.36192 x 10~ T [ 0.15391 x 10" 5306.01
5% | 0% | 3740 | 0.60320 x 10~T | 0.25652 x 107 4327.90
1.00 | 1% | 0% | 2755 | 0.12065 x 10~T | 0.51310 x 1071 3455.76
3% | 0% | 2620 | 0.36192 x 10~ | 0.15391 x 10V 3269.54
5% | 0% | 2490 | 0.60320 x 10~T | 0.25652 x 107 2868.35
1.50 | 1% | 0% | 1367 | 0.12065 % 10~1 | 0.51310 x 107! 1674.59
3% | 0% | 1299 [ 0.36192 x 10~ | 0.15391 x 107 1560.15
5% | 0% | 1234 | 0.60320 x 10~ | 0.25652 x 10° 1306.48
1.80 | 1% | 0% | 508 | 0.12065 x 10~T | 0.51310 x 10T 603.45
3% | 0% | 483 ] 0.36192 x 10~* | 0.15391 x 107 572.96
5% | 0% | 458 | 0.60320 % 10~T | 0.25652 x 10° 523.65
0.20 | 0% | 1% | 1584 | 0.48522 x 10 © | 0.26140 x 107! 1883.54
0% | 3% | 1147 | 0.14558 x 10T | 0.78556 x 1071 1302.14
0% | 5% | 905 | 0.24264 = 10T | 0.13092 x 107 1088.95
0.50 | 0% | 1% | 1323 | 0.48522 x 102 | 0.26164 x10~! 1549.07
0% | 3% | 960 [ 0.14558 x 10~ | 0.78571 x 101 1284.92
0% | 5% | 763 | 0.24264 x 10T | 0.13091 x 107 871.51
1.00 | 0% | 1% | 880 | 0.48522 x 10~2 | 0.26163 x 107! 1106.43
0% | 3% | 638 [ 0.14558 x 10~ | 0.78511 x 1071 733.87
0% | 5% | 506 | 0.24264 % 10~ | 0.13097 x 10Y 661.15
150 | 0% | 1% | 435 | 0.48522 x 1072 | 0.26152 x 107! 585.96
0% | 3% | 310 | 0.14558 x 10T [ 0.78789 x 107! 445.68
0% | 5% | 249 | 0.24264 x 10T | 0.13084 x 107 355.50
1.80 | 0% [ 1% | 162 | 0.48522 x 1072 | 0.26349 x 107! 187.09
0% | 3% | 116 | 0.14558 x 1071 [ 0.79429 x 107" 156.56
0% | 5% 92 | 0.24264 x 10~ T | 0.13120 x 107 115.96

Table 1: The values of the optimal iteration number, kop, the corresponding accuracy errors, eu(Kopt)
and eq(kop:). and the computational time, obtained using the alternating iterative algorithm I, the
regularizing stopping criterion {23), various amounts of noise added into u[rl or q|r.l and various
values for the relaxation parameter, w.

~1
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(a) Example 1: Temperatures on s (b) Example 1: Normal heat fluxes on I

Figure 2: The analytical and numerical (a) temperatures u, and (b) normal heat fluxes q, on the
under-specified boundary I's, obtained using the alternating iterative algorithm I, w = 1.50 and
various levels of noise added into q|p, .

1367, respectively. This means that, to attain the numerical sclutions for the unknown Dirichlet and
Neumann data on Ty, the alternating iterative algorithm I with over-relaxation (w = 1.50) requires a
reduction in the number of iterations performed and CPU time by approximately 50% and 67% with
respect to those corresponding to the standard iterative algorithm I as proposed by Kozlov ef ol. 4],
ie. without relaxation (w = 1.00), and the alternating iterative algorithm I with under-relaxation
(w = 0.50), respectively.

Conclusians

We proposed two algorithms involving the relaxation of either the given boundary temperature or the
prescribed normal heat flux for the iterative algorithm of Kozlov ef al. [4] applied to two-dimensional
steady-state (an)isotropic heat conduction Cauchy problems. The two well-posed and direct problems
corresponding to each iteration were solved using the MFS and the Tikhonov regularization method,
while the optimal value of the regularization parameter was selected via the GCV criterion. An
efficient regularizing stopping criterion was also presented. The numerical results obtained showed the
numerical stability, convergence and computational efficiency of the proposed relaxation procedures.
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