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Abstract.Within the constitutive framework adopted here, the plastic distortion is described by mul-
tislips in the appropriate crystallographic system, the dislocation densities ρα and hardening variables
ζα in the α−slip system are the internal variables involved in the model. The rate type boundary value
problem at time t leads to an appropriate variational equality to be satisfied by the velocity field when
the current state of the body is known. Numerical solutions are analyzed in a tensile problem when
only two physical slip systems are activated in the single (fcc) crystal sheet. The slip directions are
in the plane of the sheet, while the normals to the slip planes are spatially represented. At the initial
moment the distribution of the dislocation density is localized in a central zone of the sheet and in the
tensile problem no geometrical imperfection has been introduced. The plane stress state is compatible
with the rate type constitutive formulation of the model. The FEM is applied for solving the varia-
tional problem in the actual configuration, together with a temporal discretization of the differential
system to update the current state in the sheet. The activation condition, which is formulated in terms
of Schmid's law, allows us to describe the spread of the plastically deformed zone on the sheet.

Introduction

Defects, such as dislocations, generate plastic permanent deformations and involve changes of the
internal structure in crystalline materials, during the deformation process. We adopt the constitutive
framework of multiplicative decomposition of the deformation gradient F into elastic and plastic com-
ponents, the so-called elastic and plastic distortions,

F = FeFp (1)

within the constitutive framework of finite elasto-plasticity developed in [4]. The material behaves
like an orthotropic elastic one with respect to the plastically deformed configurations (the so-called
isoclinic configurations). The evolution in time of the plastic distortion is described in the proposed
model by multislips in the appropriate crystallographic system, which are also related with the iso-
clinic configurations. The dislocation densities ρα and hardening variables ζα in the α−slip system
are the internal variables involved in the model. The evolution equations for dislocation densities are
described either by the local laws like in [8], or by non-local laws, which account for the size effect.
For instance, we could consider, the diffusion like evolution equations discussed in [1] and evolu-
tion law used in [3], in which the variation in time of the dislocation densities is proportional with
the projection of the gradient of the plastic shear rate on the normal and slip directions, respectively.
In the numerical example analysed herein, the local evolution equations for the dislocation densities
have been considered only. The rate type boundary value problem at time t leads to an appropriate
variational equality to be satisfied by the velocity field when the current state of the body, namely the
Cauchy stress, position of the slip systems, dislocation densities and hardening variables are known.
We invoke the compatibility of the in-plane stress state with the constitutive model when only two
slip systems could be activated. The FEM is applied for solving the variational problem to define the
velocity field in the actual configuration, together with a temporal discretization of the differential
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system (which defines the rate type of the constitutive equations) to update the current state in the
sheet. By using the Matlab program, we solve numerically the problem concerning the deformation of
the sheet made up from a single (fcc) crystal when only two physical slip systems could be activated.
For the FEM procedure we make reference to [13, 14]. At the initial moment, a non-homogeneous
distribution of the scalar dislocation density is assumed in the sheet. The spread on the sheet of the
plastically deformed zone in time is numerically emphasized, starting from the reference configura-
tion. The activation condition of the slip systems is the key point in describing the variation in time
of the plastically deformed zone, plastic shears and dislocation density. No geometrical imperfections
have been considered and the slip systems are physically accepted for a (fcc) single crystal.

Constitutive model with dislocation

The material behaves like an elastic one with respect to the plastically deformed configurations (the
so-called isoclinic configurations), with the Cauchy stress, T, expressed in terms of the elastic strain,
Ee, by

T
ρ̂
= EEe with Ee =

1

2

(
(Fe)T Fe − I

)
. (2)

In our consideration, E characterizes the elastic compliance matrix in the actual configuration which
is derived from the matrix of cubic (orthotropic) elastic material, C, with the coefficients given with
respect to the isoclinic configuration by the pushing away procedure, namely

E [X] = Fe(C
[
(Fe)TXFe

]
)(Fe)T , ∀X symmetric tensor

Eijkl = F e
imF

e
jnF

e
ksF

e
lrCmnsr, (Euler notation)

(3)

The matrix C is characterized by only three elastic material constants as can be seen in Ting [10],
C11 = C22 = C33, C12 = C13 = C23, C44 = C55 = C66, using the standard notation with two indices.

In the proposed model, the evolution in time of the plastic distortion is described by multislips in
the appropriate crystallographic system

Ḟp (Fp)−1 =
N∑

α=1

να(s̄α ⊗ m̄α), (4)

where να are the plastic shear rates in the slip system α. The slip system, initially given in the isoclinic
configuration, where m̄α is the normal to the slip plane and s̄α is the slip direction, is further deformed
due to the presence of the elastic distortion Fe. In the actual configuration, the slip system is defined
through the formulae

Fes̄α = sα, (Fe)−T m̄α = mα. (5)

The orthogonality condition sα ·mα = 0 obviously holds.
By taking the time derivative of the multiplicative relation (1), the rate of elastic distortion can be

expressed in the actual configuration, in terms of the velocity gradient L = ∇v, as

Ḟe (Fe)−1 = L−
N∑

α=1

να (sα ⊗mα) , L = Ḟ (F)−1 , (6)
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where v denotes the the spatial velocity.
The model will be strongly related to the presence of dislocations inside the body and the produc-

tion, annihilation and motion of the dislocations. The following internal variables are used herein: the
dislocation densities ρα and hardening variables ζα in the α−slip system.

The activation condition is formulated in terms of the Schmid's law, i.e.

|τα| ≥ ζα ⇐⇒ Fα ≥ 0 where Fα := |τα| − ζα, (7)

with

τα = τmα · sα. (8)

and

τ = JT, J = detF şi Jρ̂ = ρ̂0. (9)

Here, ρ̂ and ρ̂0 denote the mass densities in the actual and reference configurations, respectively.
A viscoplastic flow rule associated with the deformation process is given under the following form

in [9]

να = γ̇α = γ̇α0

∣∣∣∣ταζα
∣∣∣∣n sign(τα)H(Fα), ∀α = 1, ..., N. (10)

The hardening law is described either as a given function dependent on the dislocation densities,

e.g. ζα = µb

(∑
β

aαβρβ

)1/2

[9], where µ is the elastic shear modulus, b is the magnitude of the

Burgers vector, aαβ is the matrix taking into account various types of dislocation interactions, or by
an evolution law proposed like in crystal plasticity in terms of plastic shear rates [8]

ζ̇α =
N∑

β=1

hαβ
∣∣γ̇β∣∣ . (11)

Here hαβ = hαβ(ρq) are the components of the hardening matrix and they depend on the dislocation
density. Moreover this matrix has been represented by Teodosiu [8] as

hαβ =
µ

2
aαβ

(∑
q

aαqρq

)−1/2
 1

K

(∑
q ̸=α

ρq

)1/2

− 2ycρ
α

 , (12)

whereK is a material parameter and yc denotes a characteristic length associated with the annihilation
process of dislocation dipolles.

The evolution in time of the dislocation densities are described either by a local evolution equation,
or by non-local laws, which account for the size effect.

I. We consider the local evolution equation, say of the type given in [8]

ρ̇α =
1

b

(
1

Lα
− 2ycρ

α

)
|να| cu Lα = K

(∑
q ̸=α

ρq

)−1/2

. (13)

Key Engineering Materials Vols. 554-557 101



II. A non local evolution equation, namely a diffusive evolution equation, [1], which is non-linear
of the parabolic type

ρ̇α = D

(
k∆ρα − ∂ψT

∂ρα

)
|να| , α = 1, . . . , N, (14)

where D and k are material constants. Here, ΨT represents the defect energy.
Remark.We could identify the appropriate expression for the potentialψT by considering the equality
between the functions occurring in the right hand side of equations (13) and (14) in which we take
k = 0.

III. The evolution law used in [2] asserts the variation in time of the dislocation densities is pro-
portional with the projection of the gradient of the plastic shear rate on the normal and slip direction,
respectively. A non-local evolution equation for the dislocation density dependent on its gradient has
been derived in [7].

The initial conditions have to be attached to the differential system, while a boundary condition has
to be defined in connection with the partial differential equation (14). For instance, one can consider
the following boundary condition

k
∂ρα

∂n
= iα (ρq) (15)

with iα (ρq) given functions that could depend on the scalar dislocation density, and could be influ-
enced by the shape of the boundary domain. Such type of boundary condition has been introduced in
[1, 7].

Variational problem

The weak formulation associated with the balance equation at time t can be emphasized using an
update Lagrangian formalism ( see [6, 12]), or a principle of the virtual power (see [8, 3])

If the activation condition is formulated in terms of Schmid's law, the rate type boundary value
problem at time t leads to an appropriate variational equality to be satisfied by the velocity field, v,
when the current state of the body, namely the Cauchy stress, T, position of the slip systems, (mα, sα),
dislocation densities , ρα, and hardening variables, ζα, are known. We obtain

∫
Ωt

(∇v)T · ∇wdx+
∫
Ωt

ρ̂E [D] · ∇wdx−

−
N∑

α=1

∫
Ωt

να{ρ̂E
[
{sα ⊗mα}S

]
+ (sα ⊗mα)T+ T (sα ⊗mα)T · ∇wdx =

=

∫
Γ1t

ṡt · wda+

∫
Ωt

ρḃt · wdx, ∀w ∈ Vad

(16)

with

να = J να0

∣∣∣∣T mα · sα

ζα

∣∣∣∣n sign (Tmα · sα)H (Fα) , α = 1, . . . , N. (17)

The finite element method (FEM) is applied for solving the variational problem to define the
velocity field in the actual configuration, v, together with a temporal discretization of the differential
system (which defines the rate type of the constitutive equations) to update the current state in the
sheet.
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In-plane stress state with two slip systems only

Under the hypothesis that the stress state is developed during the deformation process, either the com-

ponents T3j, j = 1, 2, 3 vanish, or
d

dt

(
T3j
ρ̂

)
= 0, j = 1, 2, 3.

Moreover the velocity field could be represented by v1 = v1(x1, x2), v2 = v2(x1, x2), and v3
chosen to be compatible with the stress state.

The following consequences obtained within the framework formulated in the section 2.
Proposition 1. 1. The elastic type constitutive equation associated with the orthotropic cubic material
is compatible with the in-plane stress state if and only if the elastic distortion is given by

Fe =

 F e
11 F e

12 0
F e
21 F e

22 0
0 0 F e

33

 . (18)

2. The plastic distortion allows a similar peculiar form , namely

Fp =

 F p
11 F p

12 0
F p
21 F p

22 0
0 0 F p

33

 . (19)

For the sake of simplicity, we assume that only two slip systems can become active. For a face
cubic centered slip system, we are restricted to the following slip systems

s1 =
1√
2

[
1, 1, 0

]
, m1 =

1√
3
(1, 1, 1)

s7 =
1√
2

[
1, 1, 0

]
, m7 =

1√
3

(
1, 1, 1

) (20)

which have been labeled following the list of slip systems to be found in Bortoloni and Cermelli [1],
see also [5].

Thus it can be proven that
d

dt

(
T3j
ρ̂

)
vanish for j = 1, 2 within the adopted constitutive frame-

work. Moreover, the rate of plastic distortion is characterized by

Ḟp (Fp)−1 = ν1(s̄1 ⊗ m̄1 − s̄7 ⊗ m̄7) (21)

since ν1 = −ν7 and |τ 1| = |τ 7|.

Proposition 2. The restriction
d

dt

(
T33
ρ̂

)
= 0 imposed on the stress state could be accomplished if

and only if D33 is given by

D33 =
1

E33
(−E31D11 − E32D22 − 2E34D12+

+E31GS
11 + E32GS

22 + E33GS
33 + 2E34GS

12)

where Gkl =
∑
α=1,7

ναsαkm
α
l , GS =

1

2
(G+GT ).

(22)

In the case considered herein, G13 = G23 = G31 = G32 = 0.
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Finite element discretization

The solution of the variational problem (16), which has been formulated at the time moment t, is
obtained by the FEM. Let us consider (tn)n=1,N be a partition of the time interval [0, T ] with tn+1 =
dt+ tn.We assume that the current values of the fields are known at moment tn, i.e.

Tn/ρ̂n,Fe
n, sαn,mα

n, γ
α
n , ρ

α
n, ζ

α
n . (23)

Let Ωtn be the domain occupied by the body at time tn.We rewrite the variational problem at time
tn to be satisfied by the velocity field v :

∫
Ωtn

(∇v)T · ∇wdx+
∫
Ωtn

ρ̂E [D] · ∇wdx−
∫
Ωtn

{
ρ̂E
[
GS
]
+GT+ TGT} · ∇wdx =

=

∫
Γ1tn

ṡt · wda+
∫
Ωtn

ρḃt · wdx, ∀w ∈ Vad.
(24)

The finite elements are chosen to be triangles and the shape functions are considered to be linear
over each element. By applying the classical FEM the discretized variational equality can be written
in the following matrix representation

K̃ṽ = −K̄v̄+ f,
where
K̃ =

∑
e

(Ãe)TKeÃe, K̄ =
∑
e

(Ãe)TKeĀe, f =
∑
e

(Ãe)T fe.
(25)

Here ṽ is the vector built using the components of the velocitiy in all network points at the nodes except
those which lying on the part of the boundary where velocities are imposed. On the contrary, the vector
v̄ contains the components of the velocities at the FEM global nodes where velocity is prescribed. We
write the expressions for the elements from formulae (25):

Ke =
(
Be

2
TBe

1 + ρ̂B4
eTEBe

3

)
Ae (26)

fe =
(
ρ̂Be

4
TEGS − Be

4
TEq+ Be

4
TQ
)
Ae +

∫
∂Ωe

tn
∩∂Ωtn

Neṡtda, (27)

Be
1 = ∆1NeT ,Be

2 = ∆2NeT ,Be
3 = ∆3NeT ,Be

4 = ∆4NeT . (28)

NeT =

[
N e

1 0 N e
2 0 N e

3 0
0 N e

1 0 N e
2 0 N e

3

]
(29)

E =

 E11 E12 E13 E14
E21 E22 E23 E24
E41 E42 E43 E44

 , GS =


GS

11

GS
22

GS
33

GS
12

 , (30)
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q =


0
0

1

E33
{
E31GS

11 + E32GS
22 + E33GS

33 + 2E34GS
12

}
0

 , (31)

Q =


2(G11T11 +G12T21)
2(G21T12 +G22T22)

G11T12 +G12T22 +G21T11 +G22T21

 . (32)

Here Ae denotes the measure of the surface associate with the finite element e in the deformed con-
figuration at moment tn, while ∆1,∆2,∆3 and ∆4 are appropriate differential operators.

When the velocity field v has been numerically found at time tn the velocity gradient,L, and rate of
strain, D, follow at once, and further by applying an update procedure to the appropriate differential-
like relationships associated with the constitutive equations describing the model, namely an explicit
Euler algorithm, we provide the values at time tn+1 for the fields listed in (23).

Note that at this level of computation only the local type of the evolution equations, say (13), have
been considered. When the non-local evolution equations for the dislocation densities have to be taken
into account, then a weak form of these equations ought to be introduced, see e.g. Kuroda [3] or in
[7], and then numerically solved.

Numerical solutions

We solve numerically the problem consisting of the deformation of a strip of length L0 in the direction
of the axis X1 and length l0 in the direction X2, respectively, when velocity is imposed at the ends of
this strip


v1 = 0, (ṡt)2 = 0 along X1 = 0, ∀X2 ∈ [0, L0]
v1 = v∗1, (ṡt)2 = 0 along X1 = L0,∀X2 ∈ [0, L0]
v2 = 0 in X1 = X2 = 0 and X1 = L0, X2 = 0.

(33)

As can be seen from Fig. 1,X2 = 0 andX2 = l0 are stress free boundaries, namely (ṡt)1 = 0, (ṡt)2 =
0, for all X1 ∈ (0, L0).

The prescribed displacement rate is given by v∗1 = 5 · 10−3mm/s.
Note that the physical slip systems considered have the slip directions in the plane of the sheet,

but the corresponding normal has a spatial representation.
The initial densities of dislocation are given by the function

ρα0 (X1, X2) =


ρmax exp

(
− 1

R2
ln(ρmin/ρmax)

(
(X1 −X0

1 )
2 + (X2 −X0

2 )
2 −R2

) )
,

for (X1 −X0
1 )

2 + (X2 −X0
2 )

2 ≤ R2,
ρmax,

for (X1 −X0
1 )

2 + (X2 −X0
2 )

2 > R2

(34)

This function, which prescribes the initial distribution of the dislocation density, takes a constant value
outside and on a given circle of the radius R and centered at (X0

1 , X
0
2 ), namely ρ10(X1, X2) = ρmax

for (X1, X2) such that (X1−X0
1 )

2+(X2−X0
2 )

2−R2 ≥ 0. The maximum dislocation density results
at the center of the aforementioned circle, i.e. ρ10(X0

1 , X
0
2 ) = ρmin.
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Fig. 1: Tension problem of single crystal

The material parameter values are taken from [8] to be: C11 = 166.1 GPa, C12 = 119.9 GPa,
C44 = 75.6 GPa, µ = 45 GPa, γ̇0 = 10−3 s−1, n = 20, ρmin = 1400 mm−2, ρmax = 2730 mm−2,
b = 2.57 · 10−7 mm, yc = 0.5 · 10−6 mm, K = 75, aαβ = 0.42 if α = β, 0.52 otherwise, ρ̂0 =

8.96·10−3 g/mm, ζα0 = µb

(∑
β

aαβρβ0

)1/2

+ζ∗, ζ∗ = 34.6·10−3GPa,L0 = 50mm and l0 = 20mm.

For the numerical computations performed, the activation condition τα ≥ ζα allows us to empha-
size the domains in which the plastic deformation occurs at a given moment. Moreover we suppose
that once the element has been activated, it remains active during the loading process.

The finite element mesh used in the present simulation has 426 elements and 238 nodes. To ensure
the stability of the time-integration scheme, we use a constant time increment dt = 0.01s.

In the beginning of the deformation process, the sheet is fully in an elastic state since no system
has been activated, namely τα < ζα for all finite elements, and the stress is homogeneous. At a certain
moment, say t∗, the plastic deformation starts from the central zone of the sheet and spreads to the
ends of the sheet as it can be seen from Fig.2. In Fig.3 the variation of the plastic shear γ1 at the points
of the sheet is plotted at a certain moment, say t = 14s.

As the points of the sheet enter the plastic zone, a small necking appears in the plastic zone, say
at moment t = 14s, but the phenomenon is not suficiently visible because of the boundary condition
imposed on the problem, which allows the glide of the sheet along axisX2 during the tensile test. On
the contrary, if the plastically deformed zone is frozen at a certain moment, say t = 14s, then the
necking becomes more visible in a continuously developed tensile test.

In Fig.4, the axial component of the Cauchy stress tensor, T11, versus the axial strain, E11, is
plotted at a central element of the discretized sheet. The distribution of the dislocation density, ρ1, on
the sheet is presented in Fig.5 at moment t = 34s. The solution of the discretized variational problems
at moment t = 34s are plotted in Fig.6 and Fig.7, namely the velocity components v1 = v1(x1, x2)
and v2 = v2(x1, x2) as functions of the points of the sheet.
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Fig. 2: Plastically deformed zone at different moments

Fig. 3: Distribution of the plastic shears γ1 in the sheet at time t = 14s.
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Fig. 4: Axial stress T11 versus E11 at a central element of the sheet at time t = 34s.

Fig. 5: Distribution of the dislocation density ρ1 = ρ1(x1, x2) on the points of the sheet, at the moment
t = 34s.

Fig. 6: Velocity field v1 = v1(x1, x2) at moment t = 34s.
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Fig. 7: Velocity field v2 = v2(x1, x2) at the moment t = 34s.
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