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Design of Interpolation Functions for Subpixel-Accuracy
Stereo-Vision Systems

Istvan Haller and Sergiu Nedevschi, Member, IEEE

Abstract—Traditionally, subpixel interpolation in stereo-vision systems
was designed for the block-matching algorithm. During the evaluation
of different interpolation strategies, a strong correlation was observed
between the type of the stereo algorithm and the subpixel accuracy of
the different solutions. Subpixel interpolation should be adapted to each
stereo algorithm to achieve maximum accuracy. In consequence, it is more
important to propose methodologies for interpolation function generation
than specific function shapes. We propose two such methodologies based
on data generated by the stereo algorithms. The first proposal uses a
histogram to model the environment and applies histogram equalization to
an existing solution adapting it to the data. The second proposal employs
synthetic images of a known environment and applies function fitting to
the resulted data. The resulting function matches the algorithm and the
data as best as possible. An extensive evaluation set is used to validate the
findings. Both real and synthetic test cases were employed in different sce-
narios. The test results are consistent and show significant improvements
compared with traditional solutions.

Index Terms—Function fitting, interpolation function, stereo vision, sub-
pixel accuracy.

[. INTRODUCTION

Subpixel accuracy is a very important component in stereo-vision
systems. Using the stereo imaging model, the distances measured in
the scene are inversely proportional with the pixel disparity in the two
images. Subpixel-level disparity calculation is required to maintain ac-
curacy over a large metric range.

Stereo vision is the process of extracting depth information from the
environment by using two or more images from different viewpoints.
The 2-D projection of a point from space is related to its distance and
the imager position. By matching the projections in multiple positions,
the depth component can be extracted. The disparity represents the
number of pixels by which a given point is displaced between two im-
ages. This is the only parameter estimated by the stereo algorithm in
terms of depth estimation. Since the disparity is inversely proportional
to the metric distance, long-range applications of stereo vision require
an accurate subpixel-level disparity estimate. To have an idea about the
necessary accuracy, let us consider the stereo setup used for this paper
and deployed as part of an automotive system. For an object located at
60 m, any disparity error larger than 0.1 pixels will result in a relative
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distance error greater than 2.5%, i.e., well beyond the required specifi-
cations, which thus results the necessity to improve the disparity error
beyond the capabilities of currents systems.

Traditionally, short-baseline stereo systems are considered to lack
the long-range accuracy necessary for such systems, and as a result,
larger baselines are used. However, this brings other issues such as dif-
ficult matches and larger occlusions. If we look at how the disparity is
transformed into distance, we can observe that there is a linear corre-
spondence between the pixel error and the baseline. Thus, if a subpixel
error can be reduced by a significant enough factor, the solution can
become competitive with current wide-baseline setups.

Equation (1) shows the relation where Z is the real depth, Ze,. is the
depth error, and F'B is the combination of the focal and the baseline.
The disparity is denoted by D, and its error by D.,,, whereas k repre-
sents the improvement factor as follows:

FB _ k-FB
D+Dcrr _k'D+k'Dcrr-
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The original taxonomy proposed by Scharstein and Szeliski [1] clas-
sifies stereo algorithms into two main groups: local and global methods.
The group of local algorithms uses a finite-support region around each
point to calculate the disparities. The methods are based around the se-
lected matching metric and usually apply some matching aggregation
for smoothing. The window aggregation allows a local smoothing of
the disparity values. Larger windows reduce the number of mismatches
but also reduce the detection rate at object boundaries. Different aggre-
gation strategies were proposed to handle this issue. The main advan-
tage of local methods is the small [2] computational complexity, which
allows for real-time implementations [3], [4]. The main disadvantage
is that only local information is used at each step. As a result, these
methods are not able to handle featureless regions or repetitive pat-
terns.

Global algorithms are able to improve the quality of the disparity
map by enforcing several global constraints in the disparity selection
phase. These constraints can include the ordering constraint, the
uniqueness constraint and, also, a smoothness constraint. The resulting
stereo matching problem is modeled as a global energy function,
which is required to be minimized. For the general 2-D case, the
problem is considered to be NP, and different approximations are
proposed, such as simulated annealing, belief propagation, or graph
cut to reduce the running time [1], [S]. Although benchmarks [6] show
a significant improvement in the disparity map quality, these methods
are not applicable for real-time applications because the running times
are several magnitudes larger than those achieved by local methods,
usually in the range of tens of seconds even on current hardware [7].
There are also issues when using these methods for driver-assistance
systems where imaging errors are frequent [8].

In 2005, Hirschmiiller proposed the semiglobal matching (SGM) [9]
stereo algorithm as an alternative to existing solutions, which achieves
high-quality results while maintaining a reduced execution time. This
algorithm cannot be classified using the original taxonomy; thus, a
new group was created, i.e., the group of semiglobal algorithms. The
method performs multiple 1-D energy optimizations on the image. The
different 1-D paths run at different angles to approximate a 2-D opti-
mization. By using multiple paths instead of a single one, it can avoid
a streaky behavior common with previous algorithms such as dynamic
programming or scan-line optimizations. The energy optimization is
based on a correlation cost and a smoothness constraint. The smooth-
ness is enforced by two components: the small penalty P1 used for
small disparity differences and the larger penalty 2 used for disparity
discontinuities. The larger penalty is adaptive and based on intensity
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changes to help with object borders. The form of the energy function
is as follows:

ED) =Y [cep.D)+ 3 PLT(D, -
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where D is the set of disparities, C' is the cost function, and NV, is
the neighborhood of point p in all directions. Function 7" turns the
values true and false into 1 and 0, respectively. D, and D, repre-
sent the selected disparities in points p and ¢. The Middlebury bench-
mark [6] shows the results achieved using this. The algorithm consis-
tently achieves results similar to the computationally most expensive
methods while clearly differentiating itself from other real-time solu-
tions. Several real-time implementations [10]-[12] were also proposed
for smaller resolution images. These results show that the method rep-
resents a good compromise between speed and accuracy for real-time
systems such as automotive applications.

Generally, stereo algorithms use a simple parabola interpolation [1],
[3], [4]. The method uses the smallest matching value and its neighbors
to interpolate a parabola around the three points [13], [14]. The location
of the minimum point for this parabola will represent the subpixel shift.
This solution is mathematically accurate if the matching function can
be modeled at least locally as a second-degree polynomial. However,
in 2001, Shimitzu and Okutomi [15] have highlighted that this solution
presents a serious issue for the simple window-based stereo algorithm,
i.e., the pixel-locking effect, where given subpixel ranges are favored
and large errors can accumulate.

Another solution proposed for subpixel interpolation is the use of a
linear function [13], [14]. The linearity is motivated for simple stereo
algorithms, which are based on aggregation. The symmetric V interpo-
lation proposed for the Tyzx DeepSea development system is one such
solution [16]. This system shows high accuracy due to the synergy be-
tween the stereo algorithm and the subpixel interpolation function.

This paper describes in detail two new methodologies that can ex-
tract new interpolation functions based on the behavior of the stereo
setup. This allows the interpolation to be handcrafted for the setup to
make sure that maximum accuracy is achieved.

The first proposal is based on the histogram model of a real scene.
Using histogram equalization, an existing interpolation model can be
adapted to reduce the subpixel errors. Although the histogram equal-
ization is difficult in the continuous domain, this solution allows the
use of real images.

For the second proposal, function fitting is used to estimate the shape
of the interpolation function more accurately. This methodology re-
quires extensive knowledge about the scene, which is difficult to obtain
in a real setting. However, this paper shows that synthetic images work
well as a work-around. In the latter case, this methodology should be
validated using real images, i.e., to make sure that there are no differ-
ences in the imaging processes.

An exhaustive battery of tests is used to validate the results. Results
are tested both on synthetic and real images with different configura-
tions in terms of relative angle and texture characteristics. Even the
parts of the Middlebury benchmark are included to show the behavior
on well-known reference images. Evaluation has focused on planar sur-
faces since the main motivation was to improve consistent subpixel er-
rors introduced by the current interpolation functions. In the case of
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complex shapes, the subpixel values are affected by multiple sources
of errors, which may lead to inconsistent results. For a modular design,
solutions to handle these errors should be decoupled from the interpo-
lation function, i.e., the latter based on the model without geometric
information. In this case, the scene complexity is not relevant for eval-
uating the interpolation function accuracy.

II. RELATED WORK

A. Fractional Disparities

The idea of using fractional disparities was first proposed by Shim-
itzu and Okutomi [15]. They observed that the subpixel errors can be
canceled through the use of the cost function of images shifted by 0.5
pixels. The shifted images will have the error function inverted com-
pared with the regular image pair. Although this solution proved to be
quite effective, its main disadvantage is that the stereo matching has to
be performed two times, resulting in a significant waste of computing
resources.

Szeliski and Scharstein [21] performed a thorough evaluation of this
idea using Fourier analysis and different upsampling techniques. Their
results show that an upsampling using the sinc interpolator and a factor
of 2 can result in significant reduction in errors. Unfortunately, this
paper evaluates the solution only for a simple window-based stereo
algorithm.

B. Solutions for Long-Range Stereo Accuracy

Gehrig and Franke [22] have also proposed two solutions to improve
the accuracy for the semiglobal stereo-vision algorithm. The first solu-
tion extends the disparity range through the use of fractional dispar-
ities. This method was based on the work presented by Szeliski and
Scharstein [21], but for some reason, the upsampling factor was in-
creased to 4. This may be due to the inherent complexity of the stereo
algorithm. Using this upsampling, the subpixel range covered by each
cost matrix step will be reduced to 0.25. The disadvantage of this solu-
tion is the significant increase in execution time and memory require-
ments.

To improve further the accuracy for a planar surface, Gehrig and
Franke also propose the use of adaptive smoothing. It is based on the
local homogeneity of the distance values on local patches. This paper
shows that planar surfaces are well reconstructed when multiple itera-
tions are used, but the computational cost is significant for a real-time
system. It is also unknown how the smoothing affects the 3-D points
for nonplanar objects and discontinuities. This is highlighted by the fact
that the error percentages increased for some of the scenarios.

III. STEREO SETUP

Modern stereo methods such as the semiglobal method [9] use
multiple nonlinear transforms. Describing the complete mathematical
model of the subpixel interpolation is difficult in this case. Examples
of such transformations are the census transform and also global and
semiglobal optimizations. The distribution of the matching values also
varies between the solutions, and as such, it is important to mention
the stereo algorithm for which we propose an interpolation function.

The stereo algorithm selected for this paper is a variation of the basic
semiglobal method [17]. These modifications concern both the run-
ning time and the subpixel accuracy. The configuration selected for this
paper uses only four directions for reducing the computational com-
plexity and improving hardware integration. Using only the horizontal
and vertical directions, the memory access pattern and the paralleliza-
tion pattern can be optimized for the GPU architecture. The original
description [9] specifies that the recommended number of directions
is at least eight to achieve quality, but previous tests [17] show that
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Fig. 1. solutions.

Intersection
SGM+ZSAD. (right) SGM + census.

scene. Comparison of different (left)

the difference is insignificant for automotive applications. Another test
[18] also supports similar results for the generic scene, although the au-
thors’ view is different. The system used for this paper is optimized for
automotive scenes where the object surfaces are usually tilted around
the image axis. Consequently, diagonal directions introduce no extra
information.

An issue was also observed concerning the subpixel accuracy of the
original system. The P1 component affects the matching values used
in subpixel interpolation. The values at positions —1 and 41 may be
shifted with constant ’1. As a result, some of the subpixel values are
corrupted, and point scatter is increased. We proposed the elimination
of this component from the equation. The new equation is as follows:

ED) =Y [cw.D)+ S P2+T[D, # D,
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For the correlation metric, the proposed solution uses the census
transform. This metric has the main advantage of being independent
of luminosity and contrast differences between cameras. Other papers
[19], [20] evaluated the different metrics, and the census transform was
consistently one of the best solutions, particularly in the presence of ra-
diometric errors. These features are important for an automotive system
where the precise calibration of cameras is difficult. The original met-
rics proposed for the semiglobal method were shown to be not effec-
tive in such systems. Another solution [12] proposed uses ZSAD, but
in previous tests, [17] the census-based solution presented a reduction
in disparity errors. Fig. 1 presents a comparison of the two solutions on
a typical scenario.

IV. INTERPOLATION FUNCTION THEORY

In this paper, we focus on the different interpolation function shapes
as a means to improve the subpixel accuracy. The shapes have a signif-
icant effect on the final distribution of points, and it should match the
mathematical model of the matching cost distributions. We propose a
common framework to define and compare different shapes.

We use the classic function prototype for subpixel interpolation, i.e.,
the same as legacy solutions as follows:

dpinal = d + flma—1,mq, Mar1) “)
where d is the integer disparity, f(mg4_1,mq, m4y1) generates the
subpixel disparity, and m is the matching cost for the different disparity
steps. We believe that the input parameters contain enough information
for an accurate interpolation while preserving simplicity.

However, having three independent input parameters is too difficult
when modeling. By finding a correlation between the parameters, the
dimensionality of the problem can be reduced. The first observation
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Fig. 2. Example image (right camera, distance is 62.17 m).

is the invariance of the subpixel position to any translation applied on
the matching cost values. All three values are translated, such that m4
becomes 0. As a result, the number of independent variables becomes
two, i.e.,

leftDif =mg_1 — my

rightDif =mgy; — myg. (@)

Finding the correlation between these variables is more difficult. A
proper mathematical model has never been described; thus, it was im-
portant to work with empirical observations. A synthetic benchmark
was used for this purpose. The scene contains a large surface parallel
to the imager plane. A nonrepetitive pattern is used to reduce stereo
uncertainty (see Fig. 2). The stereo system is chosen to have similar
parameters as a real system with a baseline of 44 cm and a focal length
of 6 mm. The imaging resolution is 512 x 383.

The position of the plane is set to distances corresponding to dis-
parity values ranging from 3.5 to 4.5 pixels using a step of 0.05.

A careful analysis of the data (see Fig. 3) shows a correlation be-
tween the polar angle, which is described by leftDif and rightDif, and
the expected subpixel value. Since the polar angle is based on the ratio
between the two parameters, the latter will be used for the proposed
model. Taking into account the symmetricity of the problem, the ratio
can also be limited to the range [0, 1] [see (6) and (7)]. The final in-
terpolation function [see (8)] maps this ration to the subpixel value as
follows:

Considering: leftDif < rightDif

_ leftDif
rightDif
dyinal = d — 0.5 + interpFunction( ) 6)
Considering: leftDif > rightDif
_ rightDif
leftDif
dpinal = d + 0.5 — interpFunction(z) (7)
where:
- interpFunction : [0, 1] — [0, 0.3]
- interpFunction is monotonic increasing
- interpFunction(0) = 0
- interpFunction(1) = 0.5. 8)

The proposed model can also be used to describe both traditional in-
terpolation functions. The resulted interpolation functions are simple
and straightforward, suggesting that the model is general and suitable
for designing new interpolation functions. The following equations use
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Fig. 3. X-leftDif, Y-rightDif, and the gray-subpixel value scaled from O to 1.

basic transformations to bring the parabola interpolation into the re-
quired template:

Flma—1,ma, may1)
_ mg—1 — Md41
T 2% (Mg — 2% Mg+ mas1)
leftDif — rightDif
2 * (leftDif 4 rightDif)

Nk leftDif
_ { 0.5 + leftDif +rightDif °

if leftDif < rightDif

0.5 — % if left Dif > rightDif
©)
depending on how the fraction is simplified, i.e.,
(0 = leftDif — leftDif), (0 = rightDif — rightDif).
The interpolation function shape is as follows:
interpFunction(z) = . i T (10)

Applying the model to the linear interpolation is even easier since it
is also based on the ratio of matching cost differences, as shown in the
following:

flma—i,ma, may1)
_ { —0.5 + § * S, if leftDif < rightDif an

© | 05— L HEDE fleftDif > rightDif.

The interpolation function shape is as follows:

interpFunction(x) = x/2. (12)

V. INTERPOLATION FUNCTION BASED ON DATA HISTOGRAM

A. Histogram: a Known Model for Real Data

The first proposed approach [23] uses real images to extract knowl-
edge about the interpolation functions. The problem with using real
images is the lack of detailed ground-truth information. The solution is
to work on a higher abstraction level then on raw pixel data, e.g., a his-
togram of subpixel values. The latter models a planar surface with a flat
histogram shape. This information is available even when other knowl-
edge about the environment is missing. By comparing the resulted his-
togram to the reference model, problem areas can be highlighted and
corrected.
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Sub-pixel histogram for parabola interpolation
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Fig. 4. Histogram of subpixel values using parabola interpolation. The x-axis
is the subpixel value compared with the closest integer. The y-axis is the
occurrence.

This experiment used a set of real images containing a segment of a
road surface covered with featureless pavement. A rectangle of interest
is applied to consider only road points from the scene. These points are
part of a single planar surface and cover multiple disparity values. As
presented previously, the subpixel range should be covered homoge-
nously in the resulting histogram bins. Although matching errors may
exist, their effect is insignificant from a statistical point of view. Using
road textures increases the amount of uncertainty, leading a significant
spread in the 3-D points. The histogram will be better covered, leading
to a smoother shape and helping analysis.

B. Histogram Equalization and the Resulting Function

In addition to visual feedback, this model allows a systematic correc-
tion through histogram equalization. Although histogram equalization
was proposed for discrete values, the mathematical model can also be
used for a continuous range.

Suppose that p(x) is the probability that the subpixel shift is equal
with @. This value is the real continuous probability, which is only ap-
proximated in the measurements. The interpFunction is used for the
equalization as follows:

p:[=0.5,0.5] — [0,1]
10,05 — [0,1]
PTransformed (-E) = P(ll’ - 03) + p(0.5 - .I‘)

PTransformed *

k4

C(lf(T) = /p'l‘ransformod(f/')df
0
interpFunctiong, . .;.q = cdf(interpFunction). (13)

The probability function is transformed to take into account the sym-
metricity of interpFunction. Function cdf represents the cumulative dis-
tribution function in the continuous domain. The difficulty lies in the es-
timation of the probability density function, which is based on the avail-
able measurements. After applying the integral operator in the function,
any errors will be magnified.

Figs. 4 and 5 present the occurrences of different subpixel shift
values for the two legacy solutions. From these figures, we try to
estimate the shape of the continuous probability function p.

Unfortunately, the shape for the parabola interpolation is quite com-
plex, making it hard to determine function p; comparatively, the linear
interpolation histogram shows a linear behavior in each of the sym-
metric subhalves. It can be described by the following linear function:
14

p'l‘ransf‘ormod(lr’) =axx+Db.
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Sub-pixel histogram for linear interpolation
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Fig. 5. Histogram of the subpixel value using linear interpolation. The x-axis
is the subpixel value compared with the closest integer. The y-axis is the
occurrence.

Sub-pixel histogram for new interpolation
m Occurence
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Fig. 6. Histogram of the subpixel value using the proposed interpolation. The
x-axis is the subpixel value compared with the closest integer. The y-axis is the
occurrence.

For this paper, the model parameters are estimated empirically. This
solution works well since the general shape of the interpolation func-
tion can also be deduced without knowledge about the parameters. The
large amount of noise in the data made it difficult to perform the entire
process automatically. Future work may be able to provide a more ro-
bust workflow.

The chosen parameters are ¢ = 1 and b = 0.5. Integrating the prob-
ability distribution function and composing it with the original linear
interpolation functions yield the following:

2

x4+

interpFunction(x) = 1

(15)

The histogram resulted with the new function is presented in Fig. 6.
The distribution is significantly improved compared with the legacy
solutions. This method is the first proposal for an improved subpixel
interpolation function.

VI. INTERPOLATION FUNCTION BASED ON FITTING

A. Basic Methodology

The second proposed approach [23] is to use synthetic images to
model the subpixel interpolation functions. The synthetic images have
the advantage of an accurate representation for a predefined scene. The
same benchmark is used as in Section IV. Each image contains a ver-
tical surface at a distance corresponding to a given subpixel location.
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Fig. 7. Plot of interpolation function shapes.

For each image, we log the data used by the subpixel interpolation. Be-
cause the proposed interpolation model uses the same data for all of the
methods, we only need to save the triplet (leftDif, rightDif, expected-
Subpixel) for each point. Using this data set, we can model the subpixel
interpolation function through function fitting. This solution allows us
to devise an interpolation function that is a perfect match for the ex-
tracted data. However, we still need to validate if the data distribution
is representative of the stereo algorithm in different scenarios. A thor-
ough evaluation of the results is presented in Sections VII and VIII.

B. Function Fitting

As the metric for function fitting, we choose the maximum error.
Compared with using the sum of errors, this metric reduces the error
peaks. For a robust system, we consider that it is much more important
to consider this worst case error. The fitting method uses nonlinear
regression to handle different component functions. The components
are based on the preliminary analysis of the data [23]. For this paper,
different polynomial and trigonometric functions were combined, with
the final results being generated by the following model:

interpFunction(m):A*m+B*;r2+C*m3+D*cos (r * g)—l—E (16)

The best fit was achieved when the sinusoidal component repre-
sented 99% of the final function. We consider that the polynomial com-
ponents are too small to be taken into account because they are within
the error margin of the imaging process. The sinusoidal function has
the following formula:

. 1
interpFunction(x) = 0.5 — 5 *cos (1 * z) . an

2

Fig. 7 compares the shape of the interpolation functions across the

input domain. While the parabola is concave and the linear interpola-

tion is straight, the two new functions are both convex. The output of

the last function is less then half of the parabola in the entire first half

of the input domain, resulting in a significantly different point distribu-
tion in the final depth image.

VII. EVALUATION USING SYNTHETIC IMAGES

A. Vertical Surfaces

The first test uses the synthetic images generated for function fit-
ting. Although this selection favors the sinusoidal, we use this test to
have a baseline before the detailed evaluation. The disparity range cor-
responds to a metric range from 48 to 62 m. For measuring the distance
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TABLE I
ERRORS FOR VERTICAL SURFACES
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TABLE IV
ERRORS FOR TILTED SURFACE (60°)

Method AVERAGE  AVERAGE Max MAX Method AVERAGE  AVERAGE MAX MAX
etho (PIXEL) (REL) (PIXEL) (REL) ctho (PIXEL) (REL) (PIXEL) (REL)
Parabola 0.124 3.10 % 0.215 5.60 % Parabola 0.107 3.05% 0.180 4.96 %
Linear 0.080 2% 0.138 3.65 % Linear 0.059 1.68 % 0.103 2.83 %
Histogram 0.045 1.12:% 0.081 2.17 % Histogram 0.022 0.64 % 0.052 1.47 %
Fitting 0.026 0.64 % 0.053 1.38 % Fitting 0.010 0.27 % 0.027 0.77 %
PIXEL—ETror in pixels/REL—Relative distance error
Histogram—Function generated using histogram equalization TABLE V
Fitting—Function generated using function fitting DEVIATION IN Y VALUES FOR HORIZONTAL SURFACE
TABLE I AVERAGE MAX
ERRORS FOR TILTED SURFACE (30°) Method (ABS) (ABS)
Parabola 8.05 mm 21.66 mm
Linear 7.09 mm 17.93 mm
AVERAGE ~ AVERAGE Max Max Histogram 6.6 mm 16.3 mm
Method o
(PIXEL) (REL) (PIXEL) (REL) Fitting 6.5 mm 15.7 mm
Parabola 0.113 2.8 % 0.217 517 %
Linear 0.063 1.58 % 0.133 3.13 %
Histogram 0.025 0.64 % 0.087 1.92 %
Fitting 0.011 0.28 % 0.051 1.13 %
TABLE III
ERRORS FOR TILTED SURFACE (45°)
AVERAGE  AVERAGE MAX MAX
Method
(PIXEL) (REL) (PIXEL) (REL)
Parabola 0.101 2.65 % 0.208 4.65 % Fig. 8. Vertical surface textured with road segment. Left image.
Linear 0.053 1.38 % 0.113 2.61 %
Histogram 0.017 0.46 % 0.047 1.25 %
Fitting 0.012 0.32 % 0.041 1.01 %

of the surface from the camera, we use the mean distance of the 3-D
points. The numerical results are presented in Table 1.

The results show that traditional solutions are a poor match to the
stereo algorithm and that they present significant errors. Both of the
proposed solutions are based on the stereo algorithm, and the errors are
reduced accordingly. The sinusoidal function resulted from the fitting
process has the lowest errors by far compared with the other results.
These results could be dismissed since the same image sequence is used
for fitting and evaluation. Still, all of the further tests show the similar
results concerning the pixel errors.

B. Surface at Different Angles

For this evaluation, we wanted to see the effect of the surface tilt
on the error rates. We use the same methodology to generate a syn-
thetic scene containing a surface at 60 m tilted at 30°/45°/60° in the
Y Z coordinate system. The middle of the camera baseline is centered
compared with the surface. For evaluation, the averages of the Y and Z
values are measured along the image rows. As aresult, we can calculate
the error between the measured Z and the expected Z based on the Y
value. The results for the three scenes are compared in Tables II-IV.

The results for all of the scenarios are consistent and similar with
the results found for the vertical surfaces. Looking at the average error,
we can observe a factor of 2 improvements for the sinusoidal function
compared with the other proposal and a factor of 5 compared with the
linear interpolation.

C. Horizontal Surface

In addition to angled surfaces, we also evaluate a horizontal surface.
The scene contains a large horizontal surface 2 m below the level of
the cameras. The same texture is used as in the previous tests. For esti-
mating the surface once more, we project the points in the 3-D metric
space. In this case, it is hard to estimate the real Z distance for each
image row. In consequence, we observe the deviation of the Y values
from the real height of 2 m. Again, we average the values along the
image rows to reduce the spread. Although the differences between the
interpolation algorithms are reduced, the order between them remains,
as presented in Table V.

D. Vertical Surface With Road-Specific Texture

To verify that the results are not specific to the texture, we generate
the same scenario but using road texture taken from the real world. The
source of the texture is a tarmac segment of a real image. Compared
with the highly detailed pattern used for the previous test, this texture
contains very weak features. The road surface was specifically selected
because it is one of the scenarios encountered by the stereo system
when deployed in an automotive environment. An example image is
presented in Fig. 8.

For the evaluation, we used only the range of disparities from 3.5 to
4. Table VI presents the results using the new image set.

The results show that the increased uncertainty amplifies the erro-
neous behavior for all of the solutions. Although the effect is different
for each solution, the order is unaffected, and the newly proposed
methods are still far better than the traditional ones.
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TABLE VI
ERRORS FOR VERTICAL SURFACES (ROAD TEXTURE)

AVERAGE  AVERAGE Max Max
Method

(PIXEL) (REL) (PIXEL) (REL)

Parabola 0.150 3.79 % 0.264 6.81 %
Linear 0.112 2.82 % 0.192 5.03 %
Histogram 0.081 2.03 % 0.136 3.6 %
Fitting 0.065 1.64 % 0.113 2.73 %

TABLE VII
ERRORS FOR VERTICAL SURFACES (UPSAMPLING)

Method AVERAGE ~ AVERAGE MAX MaAx

etho (PIXEL) (REL) (PIXEL) (REL)
Parabola 0.061 1.45 % 0.134 3.26 %
Linear 0.045 1.06 % 0.103 2.52%
Histogram 0.031 0.74 % 0.080 1.94 %
Fitting 0.025 0.62 % 0.066 1.67 %

TABLE VIII
ERRORS FOR VERTICAL SURFACES
AVERAGE  AVERAGE MAX MaAx
Method

(PIXEL) (REL) (PIXEL) (REL)
Parabola 0.127 3.16 % 0.220 5.70 %
Linear 0.082 2.05 % 0.141 3.72 %
Histogram 0.046 1.17 % 0.083 221 %
Fitting 0.027 0.68 % 0.054 1.40 %

E. Effects of Upsampling

We also verified the claims of using upsampling to improve sub-
pixel quality [8], [12], [13]. Again, we used the fitting image set and
increased the linear resolution of the images by a factor of 2. For each
image, the middle was cropped to yield a new image of the original
resolution. For this test again, we used only the subrange of disparities
from 3.5 to 4. The new error rates are presented in Table VII.

As observed in previous work [8], [12], [13] the oversampling signif-
icantly reduces the errors for traditional interpolation methods. A small
improvement is also obtained for the histogram-based solution. In the
case of the sinusoidal, the maximum error is increased, but the average
error is almost unchanged. It seems that the upsampling affects this so-
lution negatively. Even in this case, the sinusoidal presents the lowest
errors, but when using this solution, we do not recommend combining
it with upsampling to improve the results.

F. More Traditional SGM

The last synthetic test concerns the applicability on a more traditional
SGM implementation. Table VIII shows that results when applying all
eight optimization directions. This shows that, although the functions
were adapted for a specific stereo framework, they can be reused in
other variants. For the best performance, it is still recommended to
apply the proposed function generation strategies for each algorithm
configuration.

The results show that traditional solutions are a poor match to the se-
lected stereo algorithm, and they present significant errors. Both of the
proposed solutions are based on the stereo algorithm, and the errors are
reduced accordingly. The sinusoidal function resulted from the fitting
process has the lowest errors, particularly the average values, which is
almost four times better than even the histogram-based solution. Part
of this result is due to using the same image sequence for fitting and
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Fig. 9. Parking lot scene. Top image is the original left image. Bottom image
was generated using subpixel optimized real-time SGM algorithm.

TABLE IX
PIXEL ERRORS FOR REAL VERTICAL SURFACES

Method AVERAGE AVERAGE MaAx MAX
30.27M 25.31M 30.2M 25.31m

Parabola 0.168 0.156 0.180 0.165

Linear 0.094 0.090 0.109 0.103

Histogram 0.036 0.037 0.051 0.051

Fitting 0.008 0.010 0.018 0.026

evaluation. Still, all further tests show the same tendency even if the
error for the sinusoidal increases slightly.

VIII. VALIDATION USING REAL IMAGES

A. Vertical Surfaces

For the first test concerning real images, we use vertical surfaces tex-
tured with the same pattern used for the synthetic images. The pattern
was printed on a large canvas surface spanning 1.5 x 2 m. The canvas
was hung from a height slightly greater than 1 m to create a well-tex-
tured vertical surface for the evaluation (see Fig. 9). The distance be-
tween the camera system and the canvas was measured using a laser
rangefinder for maximum accuracy. Here, we present the results from
two scenarios: one at 25.31 m from the canvas and one at 30.27 m. For
this system, these correspond to disparities of 8.76 and 7.3 pixels, re-
spectively.

To limit the effects of the imaging errors, we selected a rectangle
of interest for both scenarios where the reconstructed surface was ho-
mogeneous. The distance values were averaged along the image row
to reduce the spread. Table IX includes the distance deviations from
the reference values provided by the rangefinder. The values are con-
sistent with the previous evaluations. There is little difference between
maximum and average values because each scenario covers a single
disparity and because the errors are similar for each image row.

B. Tilted Surface

For the second test, we used the same canvas to generate a tilted
surface. A panel having a width of 2 m and a height of 1 m was used for
support. The test scenario is similar with the tilted synthetic test. The
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TABLE X
ERRORS FOR REAL TILTED SURFACES
AVERAGE  AVERAGE MAX MAxX
Method
(PIXEL) (REL) (PIXEL) (REL)
Parabola 0.081 1.15% 0.159 2.25%
Linear 0.050 0.7 % 0.098 1.39 %
Histogram 0.024 0.34 % 0.050 0.73 %
Fitting 0.013 0.18 % 0.027 0.41 %
TABLE XI
PERCENTAGE OF FALSE MATCHES
VENUS TEDDY CONES
Method (threshold of (threshold of (threshold of
0.125) 0.25) 0.25)
Parabola 37.6 % 17.9 % 24.59 %
Linear 29.0 % 154 % 22.44 %
Histogram 24.6 % 143 % 21.00 %
Fitting 23.9 % 14.3 % 21.40 %

Fig. 10. Left to right: reconstructed Venus, Teddy, and Cones images.

surface ranges from 17.1 to 17.8 m, corresponding to a disparity range
from 8.03 to 7.71. Once more, the results (see Table X) correspond to
the synthetic tests.

Both of the real-world tests validate the previous evaluations, and
they prove that the proposed synthetic benchmark can replace real im-
ages when detailed information is needed about the environment.

C. Standard Benchmark

The last validation uses the Middlebury benchmark [6] to measure
the number of erroneous matches at the subpixel level (see Table XI).
A suitable image for subpixel interpolation is the Venus sequence with
a number of tilted surfaces. The pixel-locking effect is highlighted for
this sequence as the surface looses its continuity with the traditional
solutions. Images 2 and 6 are selected as the input pair because ground
truth is available for them with a resolution of 0.125 pixels. For a further
validation, the Teddy and Cones sequences were also analyzed since
they contain complex objects. Unfortunately, ground truth is available
only with an accuracy value of 0.25 pixels.

In the case of the Venus images, the number of erroneous matches is
reduced significantly since the error threshold is low enough to high-
light the problems of classical approaches. The improvements are also
visible for the Teddy and Cones sequences but are not as significant
due to the higher error threshold. Fig. 10 presents the resulting dis-
parity maps.

D. Advantages in Environment Perception

The reduced depth error also improves the performance of associated
environment perception systems. First and foremost, object distance
estimates will be more accurate since they are based on the individual
point distances. The removal of the pixel-locking effect also improves
the homogeneity of the point distribution. Algorithms based on clus-
tering or statistical sampling, which uses this data, will thus be more
efficient and work at longer distances. One example of this behavior is
visible in the case of the elevation-map algorithm [24], which is now
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Fig. 11. Urban scene. The top image is the projection of the classified occu-
pancy grid. The bottom image is the depth map.

able to generate a more refined classified occupancy grid (see Fig. 11).
High accuracy also allows a better delimitation between sidewalk and
road surfaces, increasing the curb-detection range.

IX. EVALUATION USING LOCAL STEREO ALGORITHM

One of the main ideas presented in this paper is the dependence of
the subpixel interpolation on the stereo algorithm. This behavior was
observed during the evaluation of selected stereo systems compared
with a different real-time solution.

In this evaluation, we use a local stereo algorithm using the census
and a multiwindow setup. The system is similar to the one proposed by
Hirschmiiller in 2002 [3]. Using the census transform for the matching
metric improves the pixel-level quality, compared with other metrics
such as SAD or ZSAD [9], [10]. The multiwindow setup takes into
account nine windows arranged in a 3 x 3 grid. The grid step is twice
the window size. For the final cost, we select the minimum between the
original window cost and the averages along the horizontal, the vertical
axis, and the diagonals. The option of preserving the original window
cost allows a more accurate reconstruction along object boundaries.
The same confidence based filtering and left-right consistency check
is used to eliminate the errors, as in the original system using the SGM
algorithm.

For the evaluation, we use two images from the tilted surface set: the
30° and 45° scenarios. Tables XII and XIII show the new error values.

For the traditional solutions, the relative error is reduced by almost
2% compared with previous evaluations, with the linear interpolation
being the best of all four options. The solutions proposed by us have
the worst results, showing that they are not universal solution. Both
evaluations are consistent with each other, showing that it is not an
exceptional situation.

Although local algorithms fare better in terms of subpixel interpola-
tion with the traditional functions, these algorithms present pixel-level



IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 21, NO. 2, FEBRUARY 2012

TABLE XII
ERRORS FOR TILTED SURFACE (30°) (LOCAL)

AVERAGE ~ AVERAGE MAX MAX
Method
(PIXEL) (REL) (PIXEL) (REL)
Parabola 0.061 1.49 % 0.137 2.99 %
Linear 0.012 0.29 % 0.061 1.26 %
Histogram 0.038 0.94 % 0.090 2.12 %
Fitting 0.063 1.56 % 0.140 3.02 %
TABLE XIII
ERRORS FOR TILTED SURFACE (45°) (LOCAL)
AVERAGE  AVERAGE MAX MAX
Method
(PIXEL) (REL) (PIXEL) (REL)
Parabola 0.052 1.36 % 0.129 2.77 %
Linear 0.011 0.29 % 0.033 0.92 %
Histogram 0.039 1.05 % 0.075 2.29 %
Fitting 0.063 1.68 % 0.116 3.37 %

A

Fig. 12. Parking lot scene. The top image is the original left image. The bottom
image is the depth image generated with the Tyzx DeepSea development board.

deficiencies, which limit their use in current systems. With the advances
in hardware performance, multiple real-time implementations were al-
ready presented, which used the SGM algorithm for correlation. The
subpixel advances presented in this paper are combined with the algo-
rithm adaptations and optimizations presented in [9] to create a high-
performance system called subpixel optimized real-time SGM (SORT-
SGM). Figs. 9 and 12 show a comparison of this system with a high-
performance local-algorithm-based one, i.e., the Tyzx DeepSea devel-
opment board. The huge difference in point density shows why modern
algorithms such as the SGM are important for future development.

As aresult, defining a new interpolation function shape is not enough
with the continuous evolution of stereo algorithms. It is more impor-
tant to define clear and repeatable methodologies to adapt the subpixel
interpolation to each stereo system. The two parts can then evolve side
by side, and subpixel accuracy is maintained.

X. CONCLUSION

The lack of accuracy of short-baseline stereo systems has long been
considered one of its important downsides. However, by increasing the
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pixel accuracy by a factor of 5, it becomes competitive with current
wide-baseline solutions since accuracy is linearly proportional to the
baseline.

One of the main ideas introduced in this paper is the correlation be-
tween the stereo algorithm and the subpixel interpolation. Although
this correlation is expected from the mathematical model, literature has
not considered it when presenting new subpixel interpolation models.
The evaluation comparing the interpolation techniques shows different
behaviors when used together with different stereo algorithm. High ac-
curacy cannot be achieved without using algorithm-specific interpola-
tion functions.

As such, two methodologies are proposed to solve this problem.
Both methodologies are based on data provided by the stereo algo-
rithm. Through this link, the interpolation becomes dependant of the
selected algorithm and matches its behavior.

Extensive evaluations show the improvements gained using the pro-
posed methodologies. Traditional subpixel interpolation methods per-
form poorly when used with modern stereo solutions such as the SGM
algorithm. The interpolation function resulted from the fitting process
was the most accurate, having error rates several times reduced com-
pared with the other solutions. The findings were validated through the
use of both synthetic and real images taken in different scenarios. The
results were consistent across all evaluations.

In conclusion, the proposed methods help designers generate
algorithm-specific interpolation functions, which eliminate the
pixel-locking effect. The simple three-input function model is
preserved, allowing easy integration into existing systems. The com-
putational cost is also limited to a few arithmetic operations per pixel,
i.e., similar with traditional solutions. These characteristics allow the
new functions to be used as a drop-in replacement for a large range of
existing stereo systems, improving accuracy with limited cost.
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Eye-Tracking Database for a Set of Standard Video
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Abstract—This correspondence describes a publicly available database
of eye-tracking data, collected on a set of standard video sequences that are
frequently used in video compression, processing, and transmission simu-
lations. A unique feature of this database is that it contains eye-tracking
data for both the first and second viewings of the sequence. We have made
available the uncompressed video sequences and the raw eye-tracking data
for each sequence, along with different visualizations of the data and a pre-
liminary analysis based on two well-known visual attention models.

Index Terms—Gaze tracking, video compression.

[. INTRODUCTION

The perceptual coding of video using computational models of visual
attention (VA) has been recently recognized as a promising approach to
achieve high-performance video compression [1], [2]. The idea behind
most of the existing VA-based video coding methods is to encode a
small area around the gaze locations with higher quality compared with
other less visually important regions [1]. Such a spatial prioritization
is supported by the fact that only a small region of several degrees
of visual angle (i.e., the fovea) around the center of gaze is perceived
with high spatial resolution due to the highly nonuniform distribution
of photoreceptors on the human retina [1], [3].

In recent years, various video quality assessment approaches have
been proposed based on psychophysical properties of the human vi-
sual system [4], [S]. The performance of many video quality assessment
methods, however, can be improved by incorporating VA information.
The reason is that visual artifacts are more disturbing to a human ob-
server in regions with higher saliency than in other nonsalient regions
[6].

In the literature, several computational models of VA have been de-
veloped to predict gaze locations in digital images and video [7]-[9].
Although the current VA models provide an easy and cost-effective way
for gaze prediction, they are still imperfect. One must consider that
human attention prediction is still an open and challenging problem.
Ideally, the most accurate approach to find actual gaze locations is to
use a gaze-tracking (eye-tracking) device. In a typical gaze-tracking
session, the gaze locations of a human observer are recorded when
watching a given video clip using a remote screen- or head-mounted
eye-tracking system. However, eye trackers are still fairly expensive
and are not easily accessible to most researchers.
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