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Abstract.

We report on our attempts to build a theoretical model foedaining forming limit diagrams (FLD) based on limit
analysis that, contrary to the well-known Marciniak and Eyreski (M-K) model, does not assume the initial existenca of
region with material or geometrical inhomogeneity.

We first give a new interpretation based on limit analysigHieronset of necking in the M-K model. Considering the ihitia
thickness defect along a narrow band as postulated by therivb#el, we show that incipient necking is a transition in the
plastic mechanism from one of plastic flow in both the shedtthe band to another one where the sheet becomes rigid and
all plastic deformation is localized in the band.

We then draw on some analogies between the onset of neckimglieet and the onset of coalescence in a porous bulk
body. In fact, the main advance in coalescence modellingbbaa based on a similar limit analysis with an important new
ingredient: the evolution of the spatial distribution ofds due to the plastic deformation, creating weaker regwith higher
porosity surrounded by sound regions with no voids. The tooiseoalescence is precisely the transition from a mechanis
of plastic deformation in both regions to another one, whieeesound regions are rigid.

We apply this new ingredient to a necking model based on Emétlysis, for the first quadrant of the FLD and a porous
sheet. We use Gurson’s model with some recent extensionsdelrthe porous material. We follow both the evolution of a
homogeneous sheet and the evolution of the distributioromfsv At each moment we test for a potential change of plastic
mechanism, by comparing the stresses in the uniform regidhdse in a virtual band with a larger porosity. The main
difference with the coalescence of voids in a bulk solid &t tihe plastic mechanism for a sheet admits a supplementary
degree of freedom, namely the change in the thickness ofithe@bband. For strain ratios close to the plane-straire ¢he
limit-analysis model predicts almost instantaneous megkut in the next step the virtual band hardens enough tdidage
the localisation condition. In this case we apply a suppfitagy condition for incipient necking similar to the one dse
Hil’'s model for the second quadrant. We show that this ctiodiis precisely the one for incipient bifurcation insideet
virtual (and weaker) band.

Finally we discuss some limitations, extensions and pesaitiplications of the new necking model based on limit asialy
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INTRODUCTION

The Forming Limit Diagram (FLD) is used in sheet metal forgito predict the onset of necking during sheet
processing. Necking or tearing starts when the plasticrdedton, initially present over a large region of the sheet,
becomes localized in a thin band, with a width comparablééathickness of the sheet. Subsequent loading leads to
a rapid decrease of the thickness of this band and the rupttine sheet.

The key feature of the FLD is the forming limit curve (FLC), ampirically determined curve in the space of
principal in-plane strains, that defines the boundary betveafe strains, where no necking occurs, and unsafe strains
prone to necking and sheet rupture. Keeler and Backhofearid]Goodwin [2] proposed and developed the use of
the FLD as a design tool: for a complex forming process, ag &mthe strain paths for each point of the sheet remain
below the FLC (in the safe region), there will be no neckind aheet rupture. Usually, a supplimentary safety factor
is considered by lowering the experimental FLC with somestamt strain.

Implicit in this approach is the supposition that the FLC @egs only on the sheet material properties and not on
the strain path. However, recent developments exemplifigéraf and Hosford [3] have shown that the FLC can vary
widely when a bilinear strain path is used instead of a lipedin. This means that forming processes where the ratio of
plastic strains varies signficantly throughout the proceag need several FLCs to predict necking and failure. Séevera
authors (see [4] and [5]) have proposed to use instesigess-based limit curve and diagram, claiming that these ar



inherently more path-independent that their strain-basedogue.

We start by discussing the existing models for the onsetcfing in thin sheets, divided into three classes: critical-
value based models, models based on bifurcation of plastic ifi a homogeneous sheet and models based on a
bifurcation analysis with some initial imperfection. Rateeviews of theoretical models for FLD may be found in [6],
[7] and [8].

Considering the well-known Marciniak and Kudmski (M-K) model [9] based on the postulated existence of an
initial thickness defect along a narrow band, we show tlgahécking condition can be interpreted as a change of
plastic mechanism in limit analysis. Precisely, beforedhset of necking, the plastic mechanism is that of plastic
deformation both in the band and in the uniform sheet, while@pient or after necking, plastic deformation inside
the band is accompanied by a rigid mechanism for the resediltieet.

We then draw on some analogies between the onset of neckiaghim sheet and the onset of coalescence in
a porous bulk body. Similarly to the case of necking, the boéeoalescence has been modelled by some critical
value theory [10], by plastic flow bifurcation analysis [1[]2] and by limit analysis [13]. Actually, the bifurcation
analysis alone largely overestimates the onset of coalescén fact, the main advance in coalescence modelling has
been based on limit analysis with an important new ingredife evolution of the spatial distribution of voids, due
to the plastic deformation, creating weaker regions withrenmids surrounded by stronger regions with less voids.
The onset of coalescence is precisely the transition frotagtip mechanism with plastic deformation everywhere to
another one where the stronger regions become rigid.

We explore this new avenue for the onset of localized neckifeggassume that while a metal sheetis homogeneous at
the macro level, it is probably inhomogeneous at the mess (gvains and grain boundaries, foreign inclusion, voids,
etc.). While we still suppose that these inhomogeneitiesigy averaging an initially homogeneous structure, we take
into account the change of their spatial distribution dugléstic deformation. For example, we expect that inclusion
or voids that are initially equally spaced in the rolling arehsverse directions, will, after some plastic defororati
be father apart in the major strain direction than in the mgimain direction. Once this spatial distribution becomes
highly anisotropic, there appears the possibility of a ptiédly weaker band, perpendicular to the direction of majo
strain, that could trigger a transition in plastic flow megisan: from a homogeneous plastic deformation in the entire
sheet to one in which only the weak band deforms plasticaftiyenthe surrounding regions become rigid.

We apply this new necking model based on limit analysis torag®sheet. In ductile metals and alloys, voids appear
during plastic deformation due to the cracking of foreigaluisions or a second fragile phase or to matrix/inclusion
decohesion. These voids grow because of the plastic inassipility of the surrounding matrix. The effects of voids
and in general of damage on the limit strains predicted vithNI-K theory have already been studied by Brugiet
al.[14], [15], Hu et al.[16], Chow and Yang [17] and others (for a review see [7]. Ingyal there is a consensus that
while the voids show a relatively small growth during defatian of the sheet (due mainly to a low stress triaxiality
present in a sheet), they become the predominant ruptureanisen in the neck regioafter the onset of necking.

It is therefore rather unusual to choose precisely the vagdhe culprit for necking in a uniform sheet; nevertheless
we show that taking into account the evolving distributidwaids may explain necking without any initial localized
defect.

We conclude by discussing limitations, extensions andhplesapplications of the new sheet necking model based
on limit analysis.

SHEET NECKING MODELS

Various theoretical models have been developed for piadidhe forming limit curve. There is a fundamental
difference between the first quadrant (positive minor sgaand second quadrant (negative minor strains) of the
FLD, so that many theoretical models apply to only one quatdra

Some theoretical models are based on a postulated maxircidtical value that once attained, gives rise to necking.
The first such model was proposed by Swift [18] for diffusekileg and later developed by Hora [19] (so-called
Modified Maximum Force Criterion). Bressan and Williams][pBoposed also a critical-value type model for the first
guadrant, where necking is initiated in some through-théss shear band when the shear stress on this band attains
a critical value. A similar shear failure criterion was rettg proposed by Liret al.[21]. Another model based on a
critical plastic deformation energy has been proposed gn@h al.[22]. Generally, the critical value is determined
from fitting the predictions of the model to one experimeptaiht on the FLC, typically the plane strain point (zero
minor strain).



Critical-value type models are relatively simple to impkmhand are widely used in the forming industry. One
potential advantage of these models is that they could mcjplie be used directly in the finite-element simulation to
predict incipient necking or failure for each each Gaussafpaiith no need for a forming limit diagram. However, this
advantage is again conditioned by the strain-path indegreredof the proposed critical value.

Another family of models for the forming limit curve is based a bifurcation analysis. In general, a bulk body
made from a rate-independent elasto-plastic materialsinexisomesoftening behaviour in order to exhibit plastic
flow localisation along narrow bands. This softening may be t a temperature decrease of the yield stress, or to
some damage mechanisms, etc. From the dynamical pointwf &iéncipient bifurcation the equations of movement
loose elipticity in a well described manner and therefommiddtationary strain rate discontinuities, identifiedwit
narrow localization bands. In contrast, a sheet admits y peculiar softening behavior of the total force acting on
a sectiof, mainly a decrease in the sheet thickness. It is therefanptieg to model the necking within sheets by a
bifurcation analysis.

The first bifurcation analysis (and the first theoretical mlddr FLC) was proposed by Hill [23]. He considered
a rigid-plastic sheet and was able to predict a bifurcatioly i the second quadrant of the FLD, where there are
in-plane directions with zero extension. On the contramthie first quadrant of positive principal in-plane strains,
Hill's theory predicts infinite ductility with no neckingt &ariance with experimental data.

Two approaches were developed to cope with the first quadaaet The first is due to Marciniak and Kuaski [9]
who postulated the existence of a thickness defect alongrammband in an otherwise uniform sheet. When a constant
strain ratio deformation is imposed on the uniform sheetsthain state in the defective band changes gradually tbwar
the plane strain mode (or zero extension mode inside the)paocbmpanied by a fast increase of the deformation
rate of the band and a fast decrease of its thickness, sitnitae experimental observed necking behavior. In the last
decades, the M-K has been widely extended and used, se«itw by Banabic [7].

An alternative approach is due to Stéren and Rice [24], bpssdsely on previous work by Rudnicki and Rice [11]
on plastic flow localisation in planar bands for soil and rbddies. It assumes the development @baner on the
yield surface, approximately modelled by thedeformation theory. At such a vertex, there exist an entirgye of
strain rates normal to the yield surface. During defornmtibis vertex becomes more and more pointed and the range
of normals enlarges until a bifurcation in a band becomesiplas This approach also confirms that for a rigid-plastic
material with a smooth yield surface, no necking bifurcai®possible in the first quadrant, except under conditions
of plane strain. Inclusion of elasticity predicts some tghtion but at very large strains and is therefore of no help.

We will later show that this last conclusion can be ammendbadnone takes into account the inhomogeneous
distribution of voids created by the deformation and thaeeking bifurcation is still possible in some region of the
first quadrant of the FLD.

LIMIT ANALYSISINTERPRETATION OF THE M-K MODEL

We will now show that the M-K model for the onset of necking aidra simple interpretation in terms of limit analysis
or limit loads. Figure 1la shows the typical configuration lé homogeneous regiodsalong with the thickness
defective regiorB. As it typical for the first quadrant of the FLD, we considetyothe case where the regidhis
perpendicular to the direction of the major str@®r,. To simplify the discussion we also suppose that the coatdin
system of Figure 1 is aligned with the rolling and transvedsections of the sheet, and therefore also with the
orthotropy axes of the yield locus.

In the regionA we impose a constant strain rate ratio:

2_p, 0<p<l, dp=0 @

whered is the strain rate and all variables carry a superscript stgthe region they belong to. The last equation is
implied by the condition that the strain ratdg, d,, are principal strain rates.

Using the plastic normality condition and the condition ki stress, egs. (1) uniquely determine the stwésor
the regionA2.

1 The total force is the product of the in-plane stress andtioirness.
2 The alignement of the principal strains with the orthotreps of the sheet also implies tmﬁz =0
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FIGURE 1. M-K model: thickness defect along a narrow baajignd limit load interpretation of the onset of neckirm.(

The equilibrium and compatibility conditions for the twayrens are given by:

opth = o5t optf=opt® =0,  df=d, (2)
wheret is the actual thickness. These conditions also uniquelypédfie stress and strain rate for the regson

In the usual approach to the numerical solution of the M-K elpthese differential equations are integrated using
an implicit Euler solver. During deformation, the strairterén the regiorB rotates toward the plane strain condition
wheredS, = 0. Because of eq. §2, and the normality condition for regidy this implies that®, — « whendg, — 0.
This in turn implies an infinitely fast decrease of the thieks in regiorB which is the M-K definition for incipient
necking. In practice, the solver is stopped as socxdfg/s:igz becomes larger than a predefined value, usually 10.

We now propose an alternative explanation for the incipratking predicted by the M-K model. In Figure 1b
we have plotted the intersection of the yield loci for bothiomsA and B with the hyperplane, = 013 = 023 =
o33 = 0. In order to impose the equilibrium condition or eq;)(2ve have scaled the yield loci with the respective
actual thicknesses. Starting with the known scaled swég4 in the regionA, we seek the intersection of the line
ol,tB = ofyt" with the scaled yield locus of the region B. There are thresipiities, labeled with(p,q,r) in Figure
1b: two points of intersection, one tangent point, and nersgction.

For casg(p), the two points have normals with different signsdgg and therefore the correct choice is governed
by eq. (2) and the sign od@z. The second casg) is precisely the onset of necking in the M-K model. As it easil
inferred from Figure 1b, this case has two equivalent imggtions:

dsz =0« OlBl = SUp(Gll | d029, (DB(Gll, 022) < O) 3)

where®B is the convex yield function for the regid The second equation above shows that at the onset of necking
the regionB has reached its limit load for the direction. The third casé) reinforces this limit-load interpretation:
when there is no intersection, the equilibrium conditioguiee that the stresses in regi@rare inside the convex yield
locus. This means that regidis rigid, with no plastic deformation, and this implies:

dy=dp=0, d&=d}=0 @)

so that regiorB is necessarily in the plane strain condition. We observettfia last case is incompatible with an
imposed strain rate ratio in regidnas required by eq. ¢}; in this case the simplest solution is to switch to a cortstan
stress ratio (shown with a dotted line in Figure 1b).

In conclusion, we have shown that the onset of necking in thi€ Model is characterized by the attainment of a
limit load for the defective region and a transition from atstof plastic deformation in both regions to one of plastic
deformation inside the defective region and a rigid onadiashe defect-free region.
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FIGURE 2. Typical coalescence model based on limit analysis: digioh of voids after some deformatioa)( elementary cell
showing sound and highly porous layeb &nd limit load interpretation of the onset of coalescenith stress states in the sound
regions before coalescenpeat the onset of coalescengand during coalescencgc).

COALESCENCE MODELSFOR DUCTILE POROUSMATERIALS

Initially the voids in a ductile porous material grow due theompressibility of the surrounding material. In their
pioneering work, Koplik and Needleman [25] have numencalialyzed an elementary cell in a material with periodic
voids, submitted to conditions of constatress ratio (with axisymmetric loading and predominanabsgiress); after
some deformation the plastic flow becomes localized in thantients between the voids thus leading to an accelerated
growth and subsequent coalescence of voids. An analytiodehfor the same elementary cell has been proposed by
Gologanuet al.[26], based on a sandwich model with three layers - a hightpgp® one surrounded by two sound
layers. There are two possible regimes - one with rigid ola#gers and the other with plastic sound layers. The
evolution of intervoid distances may trigger the rigid4ila regime and therefore the onset of coalescence. Rgcentl
Leblond and Mottet [27] have extended this analysis to thee a#f a combined axisymmetric and shear loading,
treating within the same model the coalescence of voidstamtbrmation of shear bands along voided sheets.

Independently, Thomason [13] has provided an analytidatism for the critical normal stress acting on a periodic
planar array of rectangular voids where only the ligamerta/ben voids are under plastic flow, the upper and lower
blocks being rigid. He then used this particular solutioétermine the onset of coalescence by the following limit
analysis recipe: use a non-localized plastic flow solutgimegh by some homogeneized model for porous solids) as
long as the normal stress given by this theory is below thealistress; otherwise switch to the rigid blocks/plastic
ligaments model.

Another successful model has been proposed by Perrin [iijla8ly to the above models he follows the evolution
of the distribution of voids and once a highly porous layefoisned, he applies to it the localized band bifurcation
analysis of Rudnicki and Rice [11].

Figure 2 shows a typical coalescence model. The essergigdients are the anisotropic distribution of voids due to
the plastic deformatioraj, the consideration of the horizontal sound lay&end highly porous layeB (b) and finally
the limit load interpretation for the onset of coalescemoenpletely analogous to the one in Figure 1b pertaining to
the onset of necking in the M-K model: when stresses in thadoegion attain the maximal stress supported by the
porous layer at), there is a change in plastic regime toward a rigid behavidihe sound regions (stresses in the
sound region are inside the yield loc®$ atr) while the porous layer remains in a strain-state compatilith this
rigid behaviourd®, = df, = 0.
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FIGURE 3. LA necking model: Spherical voids with an initial homogeunsdlistribution &), in plane virtual localisation band
after a plastic deformation with vertical major stral),(through-thickness virtual localisation band after at@bdeformation that
rendered the voids oblate)( method for determining the increased porosity in a virkoealisation bandd).

NECKING MODEL BASED ON LIMIT ANALYSISFOR POROUS SHEETS

Based on the observed analogy between the onset of shed@tgaskpredicted by the M-K model and the onset of
coalescence of voids in a porous bulk solid, we develop nowva mecking model without an initial imperfection
based on limit analysis (LA).

Let us consider a porous sheet with a matrix obeying a ritadtig law with von Mises yield criterion. An initial
isotropic distribution of voids (Fig. 3a) will evolve intmanisotropic distribution after some deformation of theeth
(Fig. 3b).

We model the voided sheet using the ellipsoidal Gurson nfool@l [28] without taking into account the distribution
of voids. At each moment we test for localisation insideuatthands with various normatg(Fig. 3c). For this test we
do take into account the anisotropic distribution of voidattieads to an increased porosity inside the band. We first
need to determine the mean void interspacirdyg and 21, in the plane of the band and in the perpendicular direction
z, parallel ton; then we need to estimate the thickness of the balgdbRequivalently the ratic = dy/d, and finally
we need a model for the limit load the band can still sustain.

Let us denoté the deformation gradient at the actual time. By assumingthieavoid interspacings are governed
by the evolution of some elementary area and length, LebdondMottet [27] were able to determine an expression
for the ratior = dyy/d;. It is easy to generalize their result to the case of a digiiob of voids that has already been
submitted to some deformation gradi€ptprior to the analyzed deformation process, again startmg fn isotropic

distribution: q
1= = VieFR (NFRFg FTn) %/, )
Z

wheren is the normal to the band (parallel to directmn

The choice of the band thickness for coalescence modelsgwasviidely discussed in the literature. For example
Thomason’s model is based on the choidg 2qual to the void height in the direction in order to best model
plastic flow localisation in the ligaments between voidss@&hon experimental observations on sheet rupture showing
that necking in general precedes void coalescence, wenfdikre the proposal of Perrin [12] and Gologastial.
[26] and choose the thickneslg such that the resulting elementary cell surrounding the Withe best possible
approximation for an ellipsoid confocal with the void. Thikoice is compatible with using an ellipsoidal Gurson
model for determining the limit load of the band; this modetds the porosit§P and the shape fact@ inside the
band.

A supplementary difficulty appears if the band is not patatieéhe void axes or if the void is not axisymmetric in
the plane of the band. In this case, we determine an equia@ymmetric void by the following recipe: we project
the initial void onto the plangy to obtain an ellipse, we replace this ellipse with a circleasfiusay, of same area and
we determine the heiglat, of the new void by imposing equal volumes for the original aeds voids. In the sequel
we will need only the following special case: the initial #@$ aligned with the sheet axes and has semiaxes, ag



and the normal to the band is given by (ng,0,nz):

1/2

Ay =&

2.2, .2 2\1/4 a183 s
(a3n1+a1n3) ; az == W, eXFXSp) == Wp =
(a3nf +afng)

(6)

axy

We note that for a initial void that is also axisymmetric ljeit prolate or oblate), the last equation defines uniquely th
shape facto8P of the projected void as a function of the initial shape fa&o
The confocality condition and the porosity are given nowliexpy by:

A2
2 42 2 2 3 Ay
db - dxy =a; — &y, f= Bd%ydz (7)
Using egs. (5, 6, 7) we obtain the final result for the porothynside the band:
1/2
ot L8, N\ 1
c=c5=1r +(Efrvvz> 1-— . (8)

For a spherical void, this expression reducestor as proposed by Leblond and Mottet [27].
We still need to provide an expression for the limit load & thrtual localization band. LetP be the stress on the
inclined band in Figure 3d due to stress equilibrium andrstampatibility with the uniform sheet:

of=o01c080, of=ousif, oh=0  dfy=0. (9)

We note that at variance with coalescence models we do nosied = d, = 0 but use rathesi = 0§, = 0 resulting
from plane stress conditions. Le&’(g, fP,SP) = 0 be the yield surface of the porous band, where we have ahitte
the dependence on other state parameters. Then the lidiptodlem for the band can be written as:

P
Omax= sup{a | ®P(aoP, fP,SP) <0, aai = O} =1 (10)
22

There is no analytical closed-form solution of this equatiwe solve it numerically using a Lagrangean formulation
that will be described elsewhere.

There is a supplementary condition for incipient neckingt thas generally be neglected in coalescence studies.
The attainment of the limit load in the band is not sufficierstthe subsequent deformation of this band and increased
hardening inside the band may instantenously deactivatiéntiit load condition. For a vertical through thickness #an
this new condition is simply:

oft<0,  of+ofdb<o. (11)
where the derivatives must be taken for a porous band thainsncompatible with rigid blocks outside the band.
The last equation is similar to the one used by Hill for theosekquadrant and identical to eq. (7) in Stéren and Rice
[24] for the bifurcation along a band perpendicular to thganatrain axis, without any consideration of a vertex on
the yield surface. This shows that the new model containsspgeeial case the bifurcation theory of Stéren and Rice,
applied not to the uniform sheet but to a virtual band withréased porosity.

We do not present here the supplementary condition for dim@éttband as we have found that it is always preceded
by the limit load condition for strain pathes close to thexi@bone, exactly where we expect that inclined bands may
be first to localize.

The final model we use is that for a non-inclined band incipieatking is attained when both conditions are true:

amax<1,  of+oPdl <o (12)

while for an inclined band only the first condition is used.
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FIGURE 4. Numerical FLD predictions for a spherical Gurson model: Lecking model versus M-K model.

NUMERICAL RESULTS

We first consider the simplest possible model for a poroustshigh a matrix having a rigid-plastic behavior with von
Mises yield surface, Swift hardening wikh= 417"MPa, &, = 0.01 and a hardening exponant 0.245 and an initial
porosity fo = 0.01. We also suppose that voids are initially spherical anthie so during sheet deformation. Figure
4 compares the prediction of the new LA necking model with M model. The LA necking model shows two
different regions: the first region, close to the planeistcanditions, is one where the bifurcation condition ed.)(1

is attained before the limit load condition eq. (10), white fhe second region the reverse is true. For this spherical
Gurson model the limit load in an inclined band was attainlegys after it was attained in the non-inclined band.
The M-K model results shown on the same figure correspondet@dle of an initial damage imperfection without
thickness imperfection - the regi@is porous but regioA is sound, while the other curve corresponds to the dual case
where the porosity is the same in both regions but there igitialithickness imperfection with thickness ratio 0.99.
We now consider the same porous material as before but weelshiape of the voids evolve toward oblate ellipsoids.
Figure 5 compares again the results of the new LA necking i M-K models. In this case one observes that
there appears a third region around the biaxial strain ¢cimmdiwhere some inclined band attains the limit load before
the non-inclined band.

CONCLUSION

We have shown that the evolution of the spatial distributibroids in a porous sheet may lead to the formation of
weak bands with higher porosity and a low limit load compatikith a rigid behavior of the rest of the sheet. We were
thus able to predict the onset of localized necking in thédjusidrant of the FLD without any initial imperfection. We
predict a Hill type incipient necking close to plane strain,inclined (throgh thickness) necking band close to blaxia
strain, and a non-inclined band in between.

We do not expect that voids will explain the FLC for all ma#¢sj nevertheless we propose that the evolution of
the spatial distribution of some other defects may als@éiga similar limit load necking mechanism. The biggest
advantage of a model without initial inhomogeneity is thatan be directly included in finite element models by
following at each Gauss point some internal parametersithesg the evolution of the voids and comparing at each
time step the stresses with limit loads corresponding tipiant necking bands with some arbitrary orientation.
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