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Abstract.
We report on our attempts to build a theoretical model for determining forming limit diagrams (FLD) based on limit

analysis that, contrary to the well-known Marciniak and Kuczynski (M-K) model, does not assume the initial existence ofa
region with material or geometrical inhomogeneity.

We first give a new interpretation based on limit analysis forthe onset of necking in the M-K model. Considering the initial
thickness defect along a narrow band as postulated by the M-Kmodel, we show that incipient necking is a transition in the
plastic mechanism from one of plastic flow in both the sheet and the band to another one where the sheet becomes rigid and
all plastic deformation is localized in the band.

We then draw on some analogies between the onset of necking ina sheet and the onset of coalescence in a porous bulk
body. In fact, the main advance in coalescence modelling hasbeen based on a similar limit analysis with an important new
ingredient: the evolution of the spatial distribution of voids, due to the plastic deformation, creating weaker regions with higher
porosity surrounded by sound regions with no voids. The onset of coalescence is precisely the transition from a mechanism
of plastic deformation in both regions to another one, wherethe sound regions are rigid.

We apply this new ingredient to a necking model based on limitanalysis, for the first quadrant of the FLD and a porous
sheet. We use Gurson’s model with some recent extensions to model the porous material. We follow both the evolution of a
homogeneous sheet and the evolution of the distribution of voids. At each moment we test for a potential change of plastic
mechanism, by comparing the stresses in the uniform region to those in a virtual band with a larger porosity. The main
difference with the coalescence of voids in a bulk solid is that the plastic mechanism for a sheet admits a supplementary
degree of freedom, namely the change in the thickness of the virtual band. For strain ratios close to the plane-strain case the
limit-analysis model predicts almost instantaneous necking but in the next step the virtual band hardens enough to deactivate
the localisation condition. In this case we apply a supplimentary condition for incipient necking similar to the one used in
Hill’s model for the second quadrant. We show that this condition is precisely the one for incipient bifurcation inside the
virtual (and weaker) band.

Finally we discuss some limitations, extensions and possible applications of the new necking model based on limit analysis.
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INTRODUCTION

The Forming Limit Diagram (FLD) is used in sheet metal forming to predict the onset of necking during sheet
processing. Necking or tearing starts when the plastic deformation, initially present over a large region of the sheet,
becomes localized in a thin band, with a width comparable to the thickness of the sheet. Subsequent loading leads to
a rapid decrease of the thickness of this band and the ruptureof the sheet.

The key feature of the FLD is the forming limit curve (FLC), anempirically determined curve in the space of
principal in-plane strains, that defines the boundary between safe strains, where no necking occurs, and unsafe strains,
prone to necking and sheet rupture. Keeler and Backhofen [1]and Goodwin [2] proposed and developed the use of
the FLD as a design tool: for a complex forming process, as long as the strain paths for each point of the sheet remain
below the FLC (in the safe region), there will be no necking and sheet rupture. Usually, a supplimentary safety factor
is considered by lowering the experimental FLC with some constant strain.

Implicit in this approach is the supposition that the FLC depends only on the sheet material properties and not on
the strain path. However, recent developments exemplified by Graf and Hosford [3] have shown that the FLC can vary
widely when a bilinear strain path is used instead of a linearpath. This means that forming processes where the ratio of
plastic strains varies signficantly throughout the processmay need several FLCs to predict necking and failure. Several
authors (see [4] and [5]) have proposed to use instead astress-based limit curve and diagram, claiming that these are



inherently more path-independent that their strain-basedanalogue.
We start by discussing the existing models for the onset of necking in thin sheets, divided into three classes: critical-

value based models, models based on bifurcation of plastic flow in a homogeneous sheet and models based on a
bifurcation analysis with some initial imperfection. Recent reviews of theoretical models for FLD may be found in [6],
[7] and [8].

Considering the well-known Marciniak and Kuczyński (M-K) model [9] based on the postulated existence of an
initial thickness defect along a narrow band, we show that its necking condition can be interpreted as a change of
plastic mechanism in limit analysis. Precisely, before theonset of necking, the plastic mechanism is that of plastic
deformation both in the band and in the uniform sheet, while at incipient or after necking, plastic deformation inside
the band is accompanied by a rigid mechanism for the rest of the sheet.

We then draw on some analogies between the onset of necking ina thin sheet and the onset of coalescence in
a porous bulk body. Similarly to the case of necking, the onset of coalescence has been modelled by some critical
value theory [10], by plastic flow bifurcation analysis [11], [12] and by limit analysis [13]. Actually, the bifurcation
analysis alone largely overestimates the onset of coalescence. In fact, the main advance in coalescence modelling has
been based on limit analysis with an important new ingredient: the evolution of the spatial distribution of voids, due
to the plastic deformation, creating weaker regions with more voids surrounded by stronger regions with less voids.
The onset of coalescence is precisely the transition from a plastic mechanism with plastic deformation everywhere to
another one where the stronger regions become rigid.

We explore this new avenue for the onset of localized necking. We assume that while a metal sheet is homogeneous at
the macro level, it is probably inhomogeneous at the meso level (grains and grain boundaries, foreign inclusion, voids,
etc.). While we still suppose that these inhomogeneities give by averaging an initially homogeneous structure, we take
into account the change of their spatial distribution due toplastic deformation. For example, we expect that inclusions
or voids that are initially equally spaced in the rolling andtransverse directions, will, after some plastic deformation,
be father apart in the major strain direction than in the minor strain direction. Once this spatial distribution becomes
highly anisotropic, there appears the possibility of a potentially weaker band, perpendicular to the direction of major
strain, that could trigger a transition in plastic flow mechanism: from a homogeneous plastic deformation in the entire
sheet to one in which only the weak band deforms plastically while the surrounding regions become rigid.

We apply this new necking model based on limit analysis to a porous sheet. In ductile metals and alloys, voids appear
during plastic deformation due to the cracking of foreign inclusions or a second fragile phase or to matrix/inclusion
decohesion. These voids grow because of the plastic incompressibility of the surrounding matrix. The effects of voids
and in general of damage on the limit strains predicted with the M-K theory have already been studied by Brunetet
al. [14], [15], Hu et al.[16], Chow and Yang [17] and others (for a review see [7]. In general there is a consensus that
while the voids show a relatively small growth during deformation of the sheet (due mainly to a low stress triaxiality
present in a sheet), they become the predominant rupture mechanism in the neck regionafter the onset of necking.
It is therefore rather unusual to choose precisely the voidsas the culprit for necking in a uniform sheet; nevertheless
we show that taking into account the evolving distribution of voids may explain necking without any initial localized
defect.

We conclude by discussing limitations, extensions and possbile applications of the new sheet necking model based
on limit analysis.

SHEET NECKING MODELS

Various theoretical models have been developed for predicting the forming limit curve. There is a fundamental
difference between the first quadrant (positive minor strains) and second quadrant (negative minor strains) of the
FLD, so that many theoretical models apply to only one quadrant.

Some theoretical models are based on a postulated maximal orcritical value that once attained, gives rise to necking.
The first such model was proposed by Swift [18] for diffuse necking and later developed by Hora [19] (so-called
Modified Maximum Force Criterion). Bressan and Williams [20] proposed also a critical-value type model for the first
quadrant, where necking is initiated in some through-thickness shear band when the shear stress on this band attains
a critical value. A similar shear failure criterion was recently proposed by Linet al. [21]. Another model based on a
critical plastic deformation energy has been proposed by Chenet al. [22]. Generally, the critical value is determined
from fitting the predictions of the model to one experimentalpoint on the FLC, typically the plane strain point (zero
minor strain).



Critical-value type models are relatively simple to implement and are widely used in the forming industry. One
potential advantage of these models is that they could in principle be used directly in the finite-element simulation to
predict incipient necking or failure for each each Gauss point, with no need for a forming limit diagram. However, this
advantage is again conditioned by the strain-path independence of the proposed critical value.

Another family of models for the forming limit curve is basedon a bifurcation analysis. In general, a bulk body
made from a rate-independent elasto-plastic materials requires somesoftening behaviour in order to exhibit plastic
flow localisation along narrow bands. This softening may be due to a temperature decrease of the yield stress, or to
some damage mechanisms, etc. From the dynamical point of view, at incipient bifurcation the equations of movement
loose elipticity in a well described manner and therefore admit stationary strain rate discontinuities, identified with
narrow localization bands. In contrast, a sheet admits a very peculiar softening behavior of the total force acting on
a section1, mainly a decrease in the sheet thickness. It is therefore tempting to model the necking within sheets by a
bifurcation analysis.

The first bifurcation analysis (and the first theoretical model for FLC) was proposed by Hill [23]. He considered
a rigid-plastic sheet and was able to predict a bifurcation only in the second quadrant of the FLD, where there are
in-plane directions with zero extension. On the contrary, in the first quadrant of positive principal in-plane strains,
Hill’s theory predicts infinite ductility with no necking, at variance with experimental data.

Two approaches were developed to cope with the first quadrantcase. The first is due to Marciniak and Kuczyński [9]
who postulated the existence of a thickness defect along a narrow band in an otherwise uniform sheet. When a constant
strain ratio deformation is imposed on the uniform sheet, the strain state in the defective band changes gradually toward
the plane strain mode (or zero extension mode inside the band), accompanied by a fast increase of the deformation
rate of the band and a fast decrease of its thickness, similarto the experimental observed necking behavior. In the last
decades, the M-K has been widely extended and used, see the review by Banabic [7].

An alternative approach is due to Stören and Rice [24], basedprecisely on previous work by Rudnicki and Rice [11]
on plastic flow localisation in planar bands for soil and rockbodies. It assumes the development of acorner on the
yield surface, approximately modelled by theJ2 deformation theory. At such a vertex, there exist an entire range of
strain rates normal to the yield surface. During deformation, this vertex becomes more and more pointed and the range
of normals enlarges until a bifurcation in a band becomes possible. This approach also confirms that for a rigid-plastic
material with a smooth yield surface, no necking bifurcation is possible in the first quadrant, except under conditions
of plane strain. Inclusion of elasticity predicts some bifurcation but at very large strains and is therefore of no help.

We will later show that this last conclusion can be ammended when one takes into account the inhomogeneous
distribution of voids created by the deformation and that a necking bifurcation is still possible in some region of the
first quadrant of the FLD.

LIMIT ANALYSIS INTERPRETATION OF THE M-K MODEL

We will now show that the M-K model for the onset of necking admits a simple interpretation in terms of limit analysis
or limit loads. Figure 1a shows the typical configuration of the homogeneous regionsA along with the thickness
defective regionB. As it typical for the first quadrant of the FLD, we consider only the case where the regionB is
perpendicular to the direction of the major strainOx1. To simplify the discussion we also suppose that the coordinate
system of Figure 1 is aligned with the rolling and transversedirections of the sheet, and therefore also with the
orthotropy axes of the yield locus.

In the regionA we impose a constant strain rate ratio:

dA
22

dA
11

= ρ , 0≤ ρ ≤ 1, dA
12= 0. (1)

whered is the strain rate and all variables carry a superscript showing the region they belong to. The last equation is
implied by the condition that the strain ratesd11,d22 are principal strain rates.

Using the plastic normality condition and the condition of plane stress, eqs. (1) uniquely determine the stressσA for
the regionA2.

1 The total force is the product of the in-plane stress and the thickness.
2 The alignement of the principal strains with the orthotropyaxes of the sheet also implies thatσA

12 = 0
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FIGURE 1. M-K model: thickness defect along a narrow band (a) and limit load interpretation of the onset of necking (b).

The equilibrium and compatibility conditions for the two regions are given by:

σA
11t

A = σB
22t

B, σA
12t

A = σB
12t

B = 0, dA
22 = dB

22 (2)

wheret is the actual thickness. These conditions also uniquely define the stress and strain rate for the regionB.
In the usual approach to the numerical solution of the M-K model, these differential equations are integrated using

an implicit Euler solver. During deformation, the strain rate in the regionB rotates toward the plane strain condition
wheredB

22= 0. Because of eq. (23), and the normality condition for regionB, this implies thatdB
11→ ∞ whendB

22→ 0.
This in turn implies an infinitely fast decrease of the thickness in regionB which is the M-K definition for incipient
necking. In practice, the solver is stopped as soon asdB

11/dB
22 becomes larger than a predefined value, usually 10.

We now propose an alternative explanation for the incipientnecking predicted by the M-K model. In Figure 1b
we have plotted the intersection of the yield loci for both regionsA andB with the hyperplaneσ12 = σ13 = σ23 =
σ33 = 0. In order to impose the equilibrium condition or eq. (21), we have scaled the yield loci with the respective
actual thicknesses. Starting with the known scaled stressσA

11t
A in the regionA, we seek the intersection of the line

σB
22t

B = σA
11t

A with the scaled yield locus of the region B. There are three posibilities, labeled with(p,q, r) in Figure
1b: two points of intersection, one tangent point, and no intersection.

For case(p), the two points have normals with different signs ofdB
22 and therefore the correct choice is governed

by eq. (23) and the sign ofdA
22. The second case(r) is precisely the onset of necking in the M-K model. As it easily

inferred from Figure 1b, this case has two equivalent interpretations:

dB
22= 0⇐⇒ σB

11 = sup
(
σ11 | ∃σ22,ΦB(σ11,σ22)≤ 0

)
(3)

whereΦB is the convex yield function for the regionB. The second equation above shows that at the onset of necking
the regionB has reached its limit load for thex1 direction. The third case(r) reinforces this limit-load interpretation:
when there is no intersection, the equilibrium condition require that the stresses in regionA are inside the convex yield
locus. This means that regionA is rigid, with no plastic deformation, and this implies:

dA
11 = dA

22= 0, dB
22 = dA

22= 0 (4)

so that regionB is necessarily in the plane strain condition. We observe that this last case is incompatible with an
imposed strain rate ratio in regionA as required by eq. (11); in this case the simplest solution is to switch to a constant
stress ratio (shown with a dotted line in Figure 1b).

In conclusion, we have shown that the onset of necking in the M-K model is characterized by the attainment of a
limit load for the defective region and a transition from a state of plastic deformation in both regions to one of plastic
deformation inside the defective region and a rigid one inside the defect-free region.
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FIGURE 2. Typical coalescence model based on limit analysis: distribution of voids after some deformation (a), elementary cell
showing sound and highly porous layers (b) and limit load interpretation of the onset of coalescence with stress states in the sound
regions before coalescencep, at the onset of coalescenceq and during coalescencer (c).

COALESCENCE MODELS FOR DUCTILE POROUS MATERIALS

Initially the voids in a ductile porous material grow due theincompressibility of the surrounding material. In their
pioneering work, Koplik and Needleman [25] have numerically analyzed an elementary cell in a material with periodic
voids, submitted to conditions of constantstress ratio (with axisymmetric loading and predominant axial stress); after
some deformation the plastic flow becomes localized in the ligaments between the voids thus leading to an accelerated
growth and subsequent coalescence of voids. An analytical model for the same elementary cell has been proposed by
Gologanuet al. [26], based on a sandwich model with three layers - a highly porous one surrounded by two sound
layers. There are two possible regimes - one with rigid outerlayers and the other with plastic sound layers. The
evolution of intervoid distances may trigger the rigid/plastic regime and therefore the onset of coalescence. Recently,
Leblond and Mottet [27] have extended this analysis to the case of a combined axisymmetric and shear loading,
treating within the same model the coalescence of voids and the formation of shear bands along voided sheets.

Independently, Thomason [13] has provided an analytical solution for the critical normal stress acting on a periodic
planar array of rectangular voids where only the ligaments between voids are under plastic flow, the upper and lower
blocks being rigid. He then used this particular solution todetermine the onset of coalescence by the following limit
analysis recipe: use a non-localized plastic flow solution (given by some homogeneized model for porous solids) as
long as the normal stress given by this theory is below the critical stress; otherwise switch to the rigid blocks/plastic
ligaments model.

Another successful model has been proposed by Perrin [12]. Similarly to the above models he follows the evolution
of the distribution of voids and once a highly porous layer isformed, he applies to it the localized band bifurcation
analysis of Rudnicki and Rice [11].

Figure 2 shows a typical coalescence model. The essential ingredients are the anisotropic distribution of voids due to
the plastic deformation (a), the consideration of the horizontal sound layersA and highly porous layerB (b) and finally
the limit load interpretation for the onset of coalescence,completely analogous to the one in Figure 1b pertaining to
the onset of necking in the M-K model: when stresses in the sound region attain the maximal stress supported by the
porous layer atq, there is a change in plastic regime toward a rigid behaviourof the sound regions (stresses in the
sound region are inside the yield locusΦA at r) while the porous layer remains in a strain-state compatible with this
rigid behaviourdB

22= dB
33 = 0.
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NECKING MODEL BASED ON LIMIT ANALYSIS FOR POROUS SHEETS

Based on the observed analogy between the onset of sheet necking as predicted by the M-K model and the onset of
coalescence of voids in a porous bulk solid, we develop now a new necking model without an initial imperfection
based on limit analysis (LA).

Let us consider a porous sheet with a matrix obeying a rigid-plastic law with von Mises yield criterion. An initial
isotropic distribution of voids (Fig. 3a) will evolve into an anisotropic distribution after some deformation of the sheet
(Fig. 3b).

We model the voided sheet using the ellipsoidal Gurson modelfrom [28] without taking into account the distribution
of voids. At each moment we test for localisation inside virtual bands with various normalsn (Fig. 3c). For this test we
do take into account the anisotropic distribution of voids that leads to an increased porosity inside the band. We first
need to determine the mean void interspacings 2dxy and 2dz in the plane of the band and in the perpendicular direction
z, parallel ton; then we need to estimate the thickness of the band 2db or equivalently the ratioc= db/dz and finally
we need a model for the limit load the band can still sustain.

Let us denoteF the deformation gradient at the actual time. By assuming that the void interspacings are governed
by the evolution of some elementary area and length, Leblondand Mottet [27] were able to determine an expression
for the ratior ≡ dxy/dz. It is easy to generalize their result to the case of a distribution of voids that has already been
submitted to some deformation gradientF0 prior to the analyzed deformation process, again starting from an isotropic
distribution:

r ≡
dxy

dz
=
√

detFF0
(
nFF0FT

0 FTn
)−3/4

. (5)

wheren is the normal to the band (parallel to directionz).
The choice of the band thickness for coalescence models has been widely discussed in the literature. For example

Thomason’s model is based on the choice 2db equal to the void height in the directionn, in order to best model
plastic flow localisation in the ligaments between voids. Based on experimental observations on sheet rupture showing
that necking in general precedes void coalescence, we follow here the proposal of Perrin [12] and Gologanuet al.
[26] and choose the thicknessdb such that the resulting elementary cell surrounding the void is the best possible
approximation for an ellipsoid confocal with the void. Thischoice is compatible with using an ellipsoidal Gurson
model for determining the limit load of the band; this model needs the porosityf p and the shape factorSp inside the
band.

A supplementary difficulty appears if the band is not parallel to the void axes or if the void is not axisymmetric in
the plane of the band. In this case, we determine an equivalent axisymmetric void by the following recipe: we project
the initial void onto the planexy to obtain an ellipse, we replace this ellipse with a circle ofradiusaxy of same area and
we determine the heightaz of the new void by imposing equal volumes for the original andnew voids. In the sequel
we will need only the following special case: the initial void is aligned with the sheet axes and has semiaxesa1,a2,a3



and the normal to the band is given byn= (n1,0,n3):

axy = a1/2
2

(
a2

3n2
1+a2

1n2
3

)1/4
, az =

a1a3(
a2

3n2
1+a2

1n
2
3

)1/2
, exp(Sp) = wp =

az

axy
. (6)

We note that for a initial void that is also axisymmetric (either prolate or oblate), the last equation defines uniquely the
shape factorSp of the projected void as a function of the initial shape factor S.

The confocality condition and the porosity are given now explicitly by:

d2
b −d2

xy = a2
z−a2

xy, f =
4π
3 a2

xyaz

8d2
xydz

(7)

Using eqs. (5, 6, 7) we obtain the final result for the porosityf p inside the band:

c=
f
f p =

[
r2+

(
6
π

f r2w2
)2/3(

1−
1

w2

)]1/2

. (8)

For a spherical void, this expression reduces toc= r as proposed by Leblond and Mottet [27].
We still need to provide an expression for the limit load of the virtual localization band. Letσ p be the stress on the

inclined band in Figure 3d due to stress equilibrium and strain compatibility with the uniform sheet:

σ p
zz= σ11cos2 θ , σ p

xz= σ11sin2 θ , σ p
yz= 0, dp

yy = 0. (9)

We note that at variance with coalescence models we do not imposedp
xx= dp

xy= 0 but use ratherσ p
xx= σ p

xy= 0 resulting
from plane stress conditions. LetΦp(σ , f p,Sp) = 0 be the yield surface of the porous band, where we have omitted
the dependence on other state parameters. Then the limit load problem for the band can be written as:

αmax= sup

{
α | Φp(ασ p, f p,Sp)≤ 0,

∂Φp

σ22
= 0

}
= 1. (10)

There is no analytical closed-form solution of this equation; we solve it numerically using a Lagrangean formulation
that will be described elsewhere.

There is a supplementary condition for incipient necking that has generally be neglected in coalescence studies.
The attainment of the limit load in the band is not sufficient,as the subsequent deformation of this band and increased
hardening inside the band may instantenously deactivate the limit load condition. For a vertical through thickness band
this new condition is simply:

˙̂
σ p

11t ≤ 0, ˙σ p
11+σ p

11d
p
33≤ 0. (11)

where the derivatives must be taken for a porous band that remains compatible with rigid blocks outside the band.
The last equation is similar to the one used by Hill for the second quadrant and identical to eq. (7) in Stören and Rice
[24] for the bifurcation along a band perpendicular to the major strain axis, without any consideration of a vertex on
the yield surface. This shows that the new model contains as aspecial case the bifurcation theory of Stören and Rice,
applied not to the uniform sheet but to a virtual band with increased porosity.

We do not present here the supplementary condition for an inclined band as we have found that it is always preceded
by the limit load condition for strain pathes close to the biaxial one, exactly where we expect that inclined bands may
be first to localize.

The final model we use is that for a non-inclined band incipient necking is attained when both conditions are true:

αmax≤ 1, ˙σ p
11+σ p

11d
p
33 ≤ 0. (12)

while for an inclined band only the first condition is used.
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FIGURE 4. Numerical FLD predictions for a spherical Gurson model: LA necking model versus M-K model.

NUMERICAL RESULTS

We first consider the simplest possible model for a porous sheet with a matrix having a rigid-plastic behavior with von
Mises yield surface, Swift hardening withK = 417MPa, ε0 = 0.01 and a hardening exponentn= 0.245 and an initial
porosity f0 = 0.01. We also suppose that voids are initially spherical and remain so during sheet deformation. Figure
4 compares the prediction of the new LA necking model with theM-K model. The LA necking model shows two
different regions: the first region, close to the plane-strain conditions, is one where the bifurcation condition eq. (11)
is attained before the limit load condition eq. (10), while for the second region the reverse is true. For this spherical
Gurson model the limit load in an inclined band was attained always after it was attained in the non-inclined band.
The M-K model results shown on the same figure correspond to the case of an initial damage imperfection without
thickness imperfection - the regionB is porous but regionA is sound, while the other curve corresponds to the dual case
where the porosity is the same in both regions but there is an initial thickness imperfection with thickness ratio 0.99.
We now consider the same porous material as before but we let the shape of the voids evolve toward oblate ellipsoids.
Figure 5 compares again the results of the new LA necking model and M-K models. In this case one observes that
there appears a third region around the biaxial strain condition, where some inclined band attains the limit load before
the non-inclined band.

CONCLUSION

We have shown that the evolution of the spatial distributionof voids in a porous sheet may lead to the formation of
weak bands with higher porosity and a low limit load compatible with a rigid behavior of the rest of the sheet. We were
thus able to predict the onset of localized necking in the first quadrant of the FLD without any initial imperfection. We
predict a Hill type incipient necking close to plane strain,an inclined (throgh thickness) necking band close to biaxial
strain, and a non-inclined band in between.

We do not expect that voids will explain the FLC for all materials; nevertheless we propose that the evolution of
the spatial distribution of some other defects may also trigger a similar limit load necking mechanism. The biggest
advantage of a model without initial inhomogeneity is that it can be directly included in finite element models by
following at each Gauss point some internal parameters describing the evolution of the voids and comparing at each
time step the stresses with limit loads corresponding to incipient necking bands with some arbitrary orientation.
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