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The structure of shock and interphase layers for a heat
conducting Maxwellian rate-type approach to solid-solid
phase transitions
Part I: Thermodynamics and admissibility

Abstract We consider a thermoelastic model for phase transforming materials which can adequately describe
the evolution with respect to the temperature of the hysteresis loop both in compression and tension tests.
The specificity of this model is that the Grüneisen coefficient changes its sign. The model is augmented by
considering a dissipative mechanism governed by a Maxwellian rate-type constitutive equation. Existence and
uniqueness of traveling wave solutions are investigated. One derives that the admissibility condition induced
by the Maxwellian rate-type approach, coupled or not with Fourier heat conduction law is related to the chord
criterion with respect to the Hugoniot locus. We investigate the structure of profile layers and their energetic
properties. The influence of the exothermic or endothermic character of phase transitions on the inner structure
of profile layers is captured.
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1 Introduction

The subject of non-linear wave propagation which causes changes not only in stress or motion, but also in
heat and temperature has attracted the interest of both theoreticians and experimentalist. We mention here for
example, as background references, the comprehensive analysis of Drumheller [7] and the extensive review
article by Menikoff and Plohr [23].

It is known that the temperature variation is especially important during phase transitions even in qua-
sistatic tests (Shaw and Kiriakides [29]). The more this happens during impact-induced experiments on ma-
terials capable of undergoing phase transformations, like shape memory alloys (SMAs) and many ceramics.
Unfortunately, temperature measurements are exceedingly difficult to be obtained during shock wave exper-
iments and too little is known about the structure of propagating phase boundaries. Nevertheless, relevant
theoretical studies that take proper account of thermal as well as mechanical constitutive response of ther-
moelastic and phase transforming materials in dynamic problems have been done (James[17], Pego [26],
Dunn and Fosdick [6], Abeyaratne and Knowles [2], Knowles [18] and the literature therein).

The study of steady, structured shock waves or traveling waves is an important subject in the theory of
waves both from practical and theoretical point of view. Thus, the study of traveling waves provides admis-
sibility criteria for discontinuous solutions of adiabatic thermoelastic theories which derives from associated
dissipative systems (Liu [21], Slemrod [30], Pego [26]). Steady shock waves were first analyzed in Newtonian
fluids (Weyl [34], Gilbarg [15] and the literature therein). In metallic materials, they have been experimentally
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observed in the 19060s (see for instance Barker [4]). The structure of these steady shock waves, which is due
to the viscous effects governing the viscoplastic flow of metals, has been recently investigated and revisited
by Molinari and Ravichandran [24].

Since stable phases of materials which suffer phase transformations are modelled, in general, by thermoe-
lastic constitutive relations, and the transition from one stable phase to another does not occur instantaneously,
but there exists a phase transition time, it appears as natural to question if a propagating phase boundary has
a structure and which are its thermomechanical features. We investigate in the following this issue for an
augmented model of a thermoelastic material which can change both the phase and the sign of the Grüneisen
coefficient.

We briefly introduce in Sect. 2 the dynamic thermomechanic bar theory in lagrangian description. Based
on experimental observations on pseudoelastic NiTi (Shaw [28]), in Sect. 3 we describe the constitutive as-
sumptions for a thermoelastic three phase materials, i.e. a material which can exist in the austenitic phase A
and in two variants of martensite M±, one obtained in tension (σ > 0) and the other in compression (σ < 0)
tests. As usual for phase transforming materials (Ericksen [8], Abeyaratne et al [3]) the stress-strain relation
σ = σeq(ε,θ) at fixed temperature θ is non-monotone on certain strain intervals. The particular feature of
our assumptions, in agreement with the experimental behavior in [28], is that ∂σeq

∂θ
is positive on that part of

the constitutive domain in the ε − θ plane associated with A ↔M + expansive phase transformation and
it is negative on the complementary part associated with A ↔M− compressive phase transformation. This
behavior reflects experimental observations related with the shape memory effect and the fact that in traction
tests the hysteresis loop moves upwards, while in compression tests it moves downwards in the ε−σ plane,
as the temperature grows. Therefore, it follows that the Grüneisein coefficient which typically is positive,
changes its sign in the ε−θ plane and this behavior has an important effect on the structure of profile layers.
Further we remind the thermodynamic relations arising from the Clausius-Duhem inequality, the Gibbsian
thermostatic stability conditions, and on the other side the dynamic stability condition which ensures the ex-
istence of a real sound speed for the thermoelastic material. Consequently, we associate the stable/unstable
phases of the material with the domain of hyperbolicity/ellipticity of the dynamic thermoelastic PDE system.
We end this section by describing the jump relations across a first order discontinuity for the adiabatic system
of thermoelasticity and by characterizing the Hugoniot locus in the ε−θ plane and in the ε−σ plane.

It is known that the Riemann problem for a thermoelastic bar capable of undergoing non-isothermal phase
transitions may not have a unique solution even if the requirement that the entropy has to increase after
the passage of the wave discontinuity is satisfied. One way to identify meaningful weak solutions for the
quasilinear adiabatic thermoelastic system is to augment the constitutive law σ = σeq(ε,θ) in such a way
that the stress depends additionally on other physical mechanisms. Usually, these are obtained by introducing
a dependence on strain rate and spatial gradients of strain (James [16], Slemrod [30], [31], Truskinovski
[33]). We adopt in Sect. 4 another point of view and we augment the thermoelastic constitutive equation by
assuming that the stress depends additionally not only on strain rate ε̇ , but also on the stress rate σ̇ . Thus,
we introduce a dissipative regularizing term which includes stress relaxation phenomena toward equilibrium
between phases. Hence, we consider the following approach which combines aspects of both the Maxwell
and KelvinVoigt models, i.e. σ = σeq(ε,θ)+ µε̇ − τσ̇ , where µ > 0 is a Newtonian viscosity and τ > 0 is
a time of relaxation. This relaxation time could be related with a phase transition time. Next, we describe
the necessary and sufficient restrictions imposed by the Clausius-Duhem inequality on this Maxwellian rate-
type model. This constitutive model has been successfully used to describe quasistatic strain-, stress- and
temperature-controlled austenitic-martensitic phase transformation in shape memory alloys in [11], [12], [13],
while impact induced phase transformation for the isothermal case in [9] .

In order to exhibit the inner structure of shock and interphase layers corresponding to this augmented
thermomechanic theory, Sect. 5 is devoted to a detailed analysis of traveling wave solutions. Since for τ = 0
our rate-type constitutive equation reduces to the Kelvin-Voigt model in solid mechanics, which is equivalent
with the Navier-Stokes equation for one-dimensional flows, from our analysis one retrieves and thus one
revisits classical results obtained in studying steady wave solutions for viscous, heat conducting fluids. Let
us remind that Gilbarg [15] has given a sufficient set of conditions on the equation of state, which includes
Weyl’s fluids [34], to prove the existence of one-dimensional shock layers and has investigated their limit
behavior for small viscosity and heat conductivity. His constitutive restrictions correspond to a convex relation
between pressure and specific volume and to a positive Grüneisen coefficient. A direct consequence of these
constitutive assumptions is that the admissible shocks are of compressive heating type. The non-convex case in
non-isothermal gas dynamics has been considered later by Liu [22] and it leads to the occurrence of shocks of
expansive cooling type. He proposed an admissibility condition of Oleinik type [25], called extended entropy
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condition, which is just a chord criterion with respect to the Hugoniot locus. His proof assumes there is no
heat conduction. When both viscosity and heat conduction are considered in the structure of the profile layer
Gilbarg’s result for the non-convex case has been extended by Pego [26].

Starting from our special constitutive assumptions we pursue two main objectives in this section. First, we
discuss the existence and uniqueness of traveling wave solutions for the augmented PDEs system. In this way
we answer the question, which is the admissibility condition induced by the Maxwellian rate-type approach,
coupled or not with Fourier heat conduction law. Second, we investigate the inner structure of profile layers,
the capacity of heat conduction and/or relaxation (viscous) dissipative mechanisms to structure shock waves
and phase transition fronts and the effect of Grüneisen coeffcient. The questions to be answered are: 1) what
happens when the viscous added effect and the heat conductivity effect vanish ?; 2) inherits the adiabatic
thermoelastic wave structure with sharp interfaces the wave structure of the augmented theory ?

We find that the chord criterion with respect to the Hugoniot locus in the ε −σ plane is, in general, a
necessary and sufficient condition for the existence and uniqueness of viscous, heat conducting profile layers.
It should be noted that this is an extremely practical admissibility condition for discontinuous solutions of the
adiabatic thermoelastic system because it does not depend on the considered dissipative mechanisms.

We also show that there may exist a non-physical situation, and we characterize it from thermodynamical
point of view, when a strong discontinuity satisfies the chord criterion, but a viscous, heat-conducting profile
layer does not exist if the viscosity effect is dominated by the heat conductivity effect, like in the example
given by Pego [26].

We consider separately the cases when the Grüneisen coefficient is positive, negative or changes its sign
inside the profile layer. We find that when the Grüneisen coefficient changes sign inside the layer, the tem-
perature variation is non-monotone, and even more, it reaches lower/larger values than the initial and final
temperature for compressive/expansive wave discontinuity. This finding could be also important in terms of
experimental. Thus, the profile layer of the temperature displays an asymmetric spike-layer form which is
in agreement with the exothermic or endothermic character of phase transformation. On the other side, this
behavior implies that, in this case, the adiabatic thermoelastic temperature structure with sharp interface does
not inherit the structure of the augmented theory.

We investigate the basic difference between the effect of viscosity and heat conduction on the structure of
the profile layers. We illustrate that when the only structuring mechanism is the heat conduction the tempera-
ture is continuous, but the strain may be discontinuous having isothermal jumps inside the profile layer.

We show that the entropy production in a viscous, thermally conducting profile layer of Maxwells type
is independent of viscosity or heat conduction. Moreover, we show that when the viscosity effect dominates
the heat conductivity effect then the variation of entropy inside the profile layer is monotone, while in the
opposite case the entropy variation is non-monotone and even more its values can become inside the profile
layer lower than the entropy front state and/or larger than the entropy of the Hugoniot back state.

For a quantitative analysis of these features an explicit piecewise linear model based on experimental
results of the type obtained by Shaw [28] will be given in Part II [10] and investigated numerically.

2 Thermomechanic bar theory. Lagrangian description

We consider a thin cylindrical bar with length L, constant cross-sectional area, constant mass density ρ (mass
per unit length) in an unstressed reference configuration, which corresponds to a defined phase of the material.
Let the function x = χ(X , t) express the longitudinal motion of the bar and θ = θ(X , t) > 0 express the
absolute temperature. The first gives the actual position x occupied at the time t by a particle labelled X ∈ [0,L]
in the reference configuration. The function χ(X , t) is assumed to be injective and bi-continuous with respect
to X . Whenever χ(X , t) is differentiable we denote by ε(X , t) = ∂ χ

∂X − 1 > −1 the strain at point X and by

v = v(X , t) = ∂ χ

∂ t the particle velocity. We denote by σ = σ(X , t) the nominal stress (longitudinal force per unit
area in the reference configuration), by e = e(X , t) the specific internal energy per unit mass, by η = η(X , t)
the specific entropy per unit mass, by q = q(X , t) the axial heat flux, by r = r(X , t) the lateral heat exchange of
the bar with its surrounding. At points (X , t) where v, ε , θ , σ , e, q and r are smooth functions the compatibility
equation between strain and particle velocity, the balance of momentum and the balance of energy become

∂ε

∂ t
− ∂v

∂X
= 0, ρ

∂v
∂ t
− ∂σ

∂X
= 0, ρ

∂e
∂ t
−σ

∂ε

∂ t
+

∂q
∂X

= r. (1)
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If we suppose that across a curve X = S(t) in the X − t plane at least one of the quantities v, ε , θ , σ , e, q
experience jumps then the continuity of the motion χ , the balance of momentum and energy require

Ṡ[ε]+ [v] = 0, ρ Ṡ[v]+ [σ ] = 0, ρ Ṡ[e]+ < σ > [v]− [q] = 0. (2)

Such a curve is usually called a strong discontinuity, or a first order discontinuity. Here Ṡ(t) denotes the
speed of propagation of the discontinuity and for any quantity f = f (X , t) we have used the notations [ f ](t) =
f +(t)− f−(t)= f (S(t)+, t)− f (S(t)−, t) and < f > (t) = 1

2 ( f +(t)+ f−(t)). We name X > S(t) as the + side
and X < S(t) as the − side of the discontinuity.

The second law of thermodynamics in the form of the Clausius-Duhem inequality reads

ρ
∂η

∂ t
≥− ∂

∂X

( q
θ

)
+

r
θ

, (3)

while for jump discontinuities it becomes

−ρ Ṡ[η ]+
[ q

θ

]
≥ 0. (4)

We note that for smooth processes the Clausius-Duhem inequality is used to restrict the form of the con-
stitutive relations, while for non-smooth processes, i.e. solutions with jump discontinuities, it becomes an
additional constraint that weak solutions must satisfy.

Let us consider the case when q+ = q− = 0 across a propagating strain discontinuity. Then the energy
balance (2)3 and the entropy inequality (4) across the discontinuity become

ρ[e]−< σ > [ε] = 0, and ρ Ṡ(η+−η
−)≤ 0. (5)

The first relation is known as the Rankine-Hugoniot equation. The second one asserts that after the passage
of a strong discontinuity the entropy of a particle will not decrease.

3 Three phase materials - the thermoelastic case

3.1 Constitutive assumptions

Solid-solid phase transformations are responsible for the remarkable properties of SMAs. They are well under-
stood and explained at crystallographic level. Basically, there are two relevant phases associated with SMAs,
the austenite (stable at high temperatures) and the martensite (stable at low temperatures). While the austenite
has a well-ordered body-centered cubic structure that presents only one variant, the martensite can form even
twenty four variants. For an uniaxial test at a given temperature, it is enough to consider a material which
exists in the austenite phase A , for sufficiently small values of strain, and in two variants of martensite M +

and M−. One variant is obtained for sufficiently large tensile strain and the other variant for sufficiently large
compressive strain, respectively. In general this deformation behavior for single crystal and polycrystalline
NiTi was observed to be asymmetric in tension and in compression (Gall et al [14]).

From phenomenological point of view, starting with the paper by Ericksen [8], the reversible phase trans-
formations in crystalline solids have been successfully studied using the theory of thermoelasticity with non-
convex free-energy or, equivalently, in the one-dimensional context, with non-monotone stress-strain relation
for certain interval of temperature. In this paper we consider such a stress-strain-temperature relation

σ = σeq(ε,θ), (6)

in order to characterize the response of a three phase shape memory alloy in traction and compression tests.
This phenomenological constitutive equation can be determined starting from isothermal stress-strain curves
obtained experimentally at very low strain-rates over an interval of temperature and from the macroscopic
observations which accompany the evolution of inhomogeneous deformation. A typical example is given by
the pseudoelastic responses of a nearly equiatomic polycrystalline NiTi alloy under uniaxial traction tests
reported by Shaw and Kyriakides [29] and Shaw [28, Fig.3] for temperatures between 15 ◦C and 55 ◦C.

The above mentioned set of uniaxial displacement controlled tests conducted in nearly isothermal condi-
tions are characterized by hysteresis loops having the following characteristics. The bar, initially in the phase
of low stretch (austenite), starts to deform elastically in a homogeneous manner. This homogeneity is lost
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shortly after the maximum stress σ = σ
+
M(θ), which corresponds to the strain level ε = ε

+
M(θ), is reached

(see Fig. 1). Thus the beginning of a stress decay is followed immediately by a significant stress-drop which
accompanies the first nucleation of martensite. The forward austenite - martensite phase transformation pro-
duces a well defined upper stress plateau with small oscillations. Along it the transformation occurs in a
localized way, i.e through nucleation events and subsequent growth of the high stretch phase (martensite) into
the austenite phase. Once the transformation is complete the specimen starts again to deforms elastically and
homogeneously while the slope of the stress-strain relation σ = σeq(ε,θ) is again positive.

During unloading the stress decreases nonlinearly while the specimen deforms homogeneously in the new
martensite phase. This homogeneity is lost shortly after a minimum stress σ = σ+

m (θ) has been reached (see
Fig. 1), which corresponds to the strain ε = ε+

m (θ). After a sudden stress rise, unstable transformation from
martensite to austenite proceeds along a lower stress plateau by the propagation of distinct phase fronts along
the length of the unloaded specimen.

Since along the loading and unloading stress plateaus the coexistence of two solid phases is allowed and,
in general, multiple co-existent phase distributions are possible for a single axial stress state it is natural and
common to consider the slope of the stress-strain relation σ = σeq(ε,θ) negative for ε ∈ (ε+

M(θ),ε+
m (θ)).

We will see later in what way the monotone increasing/decreasing stress-strain relations σ = σeq(ε,θ) are
associated with the so called stable/unstable states of the material.

While the monotone increasing parts of the stress-strain relations σ = σeq(ε,θ) can be chosen in such a
way to fit known quasi-static isothermal experiments like in Shaw [28, Fig.3], the monotone decreasing part
of these curves cannot be determined in a direct way from such experiments. Consequently, in general, they
are chosen in a conventional way which is illustrated in the example considered in Part II of this paper [10].

Let us note that for theories like those developed by Abeyaratne and Knowles [1] based on additional
constitutive information in the form of driving force and nucleation criteria an explicit form for σ = σeq(ε,θ)
on the unstable interval ε ∈ (ε+

M(θ),ε+
m (θ)) is necessary only in so far as the Maxwell stress need to be de-

termined. On the other side, theories which include rate-effects like in our case possess their own kinetics
due to the (viscous) dissipation mechanisms incorporated. Thus, the form of the descending part of the con-
stitutive equation σ = σeq(ε,θ) will only affect the kinetics of phase transformation, i.e. the rate at which
the transformation takes place in the unstable interval. Indeed, it was shown, for the isothermal case, in Făciu
and Molinari [9, Part II, Sect. 2, relations (11)-(12)] how the slope of the equilibrium curve influences the
growth/decay of a perturbation of an equilibrium state.

The same type of deformation behavior, but in general asymmetric, can be observed in compression tests.
Therefore, we suppose in the following that the pairs of stress and strain (σ = σ

±
M(θ),ε = ε

±
M(θ)) and (σ =

σ±m (θ),ε = ε±m (θ)) associated with the changes of slopes of the equilibrium stress-strain relation at constant
temperature (see Fig. 1) can be determined experimentally. Using this information we can plot a phase diagram
in the ε−θ plane, like in Fig. 2, which contains essential constitutive information on phase transformation.

θ=
θ 2

θ=
θ 1

θ=
θ 1

θ=
θ 2

 

 

σ

ε

θ
m

<θ
1
<θ

2
<θ

M

ε
m
+ (θ)ε

M
+ (θ)

ς
M
+ (θ)

σ
M
+ (θ)

ε
M
− (θ)γ

m
− (θ) γ

M
− (θ)

γ
m
+ (θ)γ

M
+ (θ)

ς
m
+ (θ)

σ
m
+ (θ)

ε
m
− (θ)

σ
M
− (θ)

σ
m
− (θ)

ς
m
− (θ)

ς
M
− (θ)

Fig. 1 Evolution of the stress-strain curves with respect to temperatures: θ ∈ (θm,θM) - pseudoelastic range.

In the following we assume (see also Abeyaratne et al [3]) there are two critical temperatures θm and θM
such as, for θ > θM the material only exists in its austenite form no matter what the stress level is, whereas
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Fig. 2 Phase diagram in the ε−θ plane.

for θ < θm the material only exists in its martensitic forms. For θ ∈ [θm,θM] all three phases are available to
the material. The thermomechanical assumptions we consider here are.

H1) The boundary curves ε = ε±m (θ), ε = ε
±
M(θ) of the phase diagram in the ε−θ plane (see Fig. 2) are

continuously differentiable and have the following properties:

dε
+
M(θ)
dθ

> 0,
dε
−
M(θ)
dθ

< 0 for θ ∈ (θm,θM);
dε+

m (θ)
dθ

> 0,
dε−m (θ)

dθ
< 0 for θ < θM

ε
+
M(θm) = ε

−
M(θm), ε

−
m (θM) = ε

−
M(θM), ε

+
m (θM) = ε

+
M(θM). (7)

H2) The stress response function σeq(ε,θ) is continuous, piecewise-smooth and satisfies the following
properties. a) At each temperature θ > θM , σeq(ε,θ) is a monotonically increasing function of strain. b) At
each temperature θ ∈ [θm,θM] (see Fig. 1) the function σeq(ε,θ) is: a monotonically increasing function of
strain for ε < ε−m (θ), for ε ∈ (ε−M(θ),ε+

M(θ)) and for ε > ε+
m (θ); a monotonically decreasing function of

strain over the intervals (ε−m (θ),ε−M(θ)) and (ε+
M(θ),ε+

m (θ)). c) At each temperature θ < θm, σeq(ε,θ) is a
monotonically increasing function of strain for ε < ε−m (θ) and ε > ε+

m (θ) while on the remaining interval
(ε−m (θ),ε+

m (θ)) it is monotonically decreasing.
It is well known that the pseudoelastic hysteresis is strongly influenced by the temperature. Indeed, accord-

ing to the traction tests reported by Shaw [28] the hysteresis loop moves upward as the temperature grows. On
the other side, for compression tests, the hysteresis loop moves downward as the temperature grows (Tobushi
et al [32]). Consequently, we consider the following natural assumption.

H3) There exists a monotone curve ε = εt(θ) across which ∂σeq(ε,θ)
∂θ

changes the sign (Fig. 2), i.e.

∂σeq(ε,θ)
∂θ

> 0, for ε > εt(θ);
∂σeq(ε,θ)

∂θ
< 0, for ε < εt(θ),

ε
−
M(θ) < εt(θ) < ε

+
M(θ), for θ ∈ (θm,θM) and ε

−
m (θ) < εt(θ) < ε

+
m (θ), for θ < θm. (8)

Concerning the smoothness assumptions of relation σ = σeq(ε,θ) we distinguish two cases.
S1) First, we consider σ = σeq(ε,θ) a smooth function (at least of class C2) on its domain of definition.
S2) Second, we suppose σ = σeq(ε,θ) a continuous and piecewise smooth function on its domain of

definition. More precisely, it is smooth (at least of class C2) on each domain delimitate by the curves ε =

ε
±
M(θ), ε = ε±m (θ), and ε = εt(θ) across which ∂σeq

∂ε
, ∂σeq

∂θ
, ∂ 2σeq

∂θ 2 may have jump discontinuities. A typical
example is given in Part II [10] where a piecewise linear relation is considered.

3.2 Thermodynamic considerations for the thermoelastic model

It is well known that the second law of thermodynamics (31) imposes the following restrictions on the free
energy ψ = ψeq(ε,θ), entropy η = ηeq(ε,θ) and dissipation of the thermoelastic model (6)

σeq(ε,θ) = ρ
∂ψeq(ε,θ)

∂ε
, ηeq(ε,θ) =−

∂ψeq

∂θ
(ε,θ), Dth =− q

θ

∂θ

∂X
≥ 0. (9)



Structure of profile layers for a heat conducting Maxwellian approach to phase transitions 7

Indeed, in this case, for any smooth fields ε and θ there exists only thermal dissipation. Since we consider the
Fourier law for axial heat conduction, i.e. q =−κ

∂θ

∂X , we remind that (9)3 requires κ > 0.
Let us first consider the smooth case S1). The stress response function σ = σeq(ε,θ), determined mainly

from quasistatic experiments, defines a unique free energy function ψeq(ε,θ), modulo an additive function of
temperature φ = φ(θ), as well as, the entropy η = ηeq(ε,θ), the internal energy e = eeq(ε,θ) = ψeq +θηeq
and the specific heat at constant strain C = Ceq(ε,θ) by relations

ψeq(ε,θ) =
∫

ε

ε0

1
ρ

σeq(s,θ)ds+φ(θ), ηeq(ε,θ) =−
∫

ε

ε0

1
ρ

∂σeq(s,θ)
∂θ

ds− dφ(θ)
dθ

, (10)

Ceq(ε,θ)≡
∂eeq

∂θ
≡ θ

∂ηeq

∂θ
≡−θ

∂ 2ψeq(ε,θ)
∂θ 2 =−θ

∫
ε

ε0

1
ρ

∂ 2σeq(s,θ)
∂θ 2 ds−θ

d2
φ(θ)
dθ 2 , (11)

where ε0 is an arbitrary reference strain.
It is known that from calorimetric measurements it is possible to determine the specific heat at a con-

stant strain ε0 over an interval of temperatures, i.e. Ceq(ε0,θ). This information is sufficient to determine the
additive function φ = φ(θ) as solution of the differential equation

d2
φ(θ)
dθ 2 =−

Ceq(ε0,θ)
θ

, (12)

up to an arbitrary linear function of θ , which can be established once the free energy and the entropy at a
given state, respectively ψeq(ε0,θ0) and ηeq(ε0,θ0) are given.

Moreover, according to assumption S1) the free energy ψeq(ε,θ) and the entropy ηeq(ε,θ) are at least
of C1 class and the specific heat Ceq(ε,θ) is at least of C0 class on the domain of definition. If the weaker
assumption S2) is fulfilled one shows that the free energy is of class C1, the entropy as well as the internal
energy are of class C0, while the specific heat is a discontinuous function on its domain of definition.

We also remind the following energy identity for smooth fields

ρ
∂eeq(ε,θ)

∂ t
= σeq(ε,θ)

∂ε

∂ t
−θ

∂σeq

∂θ

∂ε

∂ t
+ρCeq

∂θ

∂ t
, (13)

where the first right-term with minus sign is the working, while the second and the third right-term describe
the contribution of the latent heat and specific heat, repectively, to the heating of the thermoelastic material.

Often are employed the strain ε and the entropy η , rather than ε and the temperature θ , as independent
variables. This is possible because the specific heat at constant strain Ceq(ε,θ) is always strictly positive and,
according to (11), ηeq(ε,θ) must be a strictly increasing function of θ for each fixed ε . It follows that the
equation (10)2 can be solved for θ in a unique manner as θ = θ̃(ε,η). The internal energy is then defined by
e = ẽ(ε,η) = eeq(ε, θ̃(ε,η)) and the stress by σ = σ̃(ε,η) = σeq(ε, θ̃(ε,η)). Moreover, in this case the in-
ternal energy is a thermodynamic potential for the stress and temperature, i.e. σ = σ̃(ε,η) = ρ

ẽ(ε,η)
∂ε

and θ =

θ̃(ε,η) = ẽ(ε,η)
∂η

. The specific heat at constant strain is given by C̃(ε,η)=Ceq(ε, θ̃(ε,η))=θ̃(ε,η) ∂ηeq(ε,θ̃(ε,η))
∂θ

=θ̃(ε,η)
(

∂ θ̃(ε,η)
∂η

)−1
. Let us note that by using the chain rule we get

∂ σ̃(ε,η)
∂ε

=
∂σeq(ε, θ̃(ε,η))

∂ε
+

θ̃(ε,η)
ρCeq(ε, θ̃(ε,η))

(
∂σeq(ε, θ̃(ε,η))

∂θ

)2

. (14)

Since we will use as independent variables the strain ε and the temperature θ it is useful to remind here
the equation of an isentrope. By differentiating relation ηeq(ε,θ) = η∗ =const. and by using the relations (9)
we get that an isentrope in the ε−θ plane is a solution θ = θI(ε) of the differential equation

dθ

dε
=

θ

ρCeq(ε,θ)
∂σeq(ε,θ)

∂θ
. (15)

Let us note that if ∂σeq(ε,θ)
∂θ

< 0 the temperature decreases along the isentrope, while if ∂σeq(ε,θ)
∂θ

> 0 the
temperature increases along the isentrope.
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Some dimensionless combinations are often used. For instance, sometime it is convenient to introduce the
Grüneisen coefficient which is defined as

Γ = Γ (ε,θ) =− 1+ ε

ρCeq(ε,θ)
∂σeq(ε,θ)

∂θ
, (16)

and characterizes the temperature changes along an isentrope. Indeed, according to (15) we have dθ

θ
=

−Γ (ε,θ) dε

1+ε
, i.e it is the negative slope of the isentrope in the logθ − log(1+ ε) plane.

The coefficient of thermal expansion at constant stress is defined as

α(ε,θ) =−
(

∂σeq(ε,θ)
∂θ

)(
∂σeq(ε,θ)

∂ε

)−1
. (17)

and characterizes the temperature changes along an isobar (σ =const.) in the ε−θ plane.
Usually Γ and α are positive for most metals although there are known exceptions. Let us note that

according to our assumption H3, Γ changes its sign across the curve ε = εt(θ) (Fig. 2). Moreover, α changes
also its sign in the ε − θ plane. Such behavior, when the thermal expansion coefficient is negative during
martensitic - austenitic transformation has been reported by Uchil et al [35] in near-equiatomic, cold-worked
Nitinol exhibiting shape memory effect.

3.3 Stability conditions. Constitutive domains of stable/unstable phases.

According to the Gibbsian thermostatics (Coleman and Noll [5]), a necessary condition for a point (ε,η) to
be thermostatically stable is that ẽ(ε∗,η∗)− ẽ(ε,η)− ∂ ẽ(ε,η)

∂ε
(ε∗−ε)− ∂ ẽ(ε,η)

∂η
(η∗−η)≥ 0, for any (ε∗,η∗)

in the domain of ẽ(·, ·). One shows that conditions ∂σeq(ε,θ)
∂ε

≥ 0 and Ceq(ε,θ) =−θ
∂ 2ψeq(ε,θ)

∂θ 2 > 0 are necessary
and sufficient to ensure the Gibbsian thermostatic stability.

A natural physical condition to be imposed on the constitutive functions is to require the existence of real
and finite sound speeds (acceleration waves) in the adiabatic case. We call it dynamic stability condition since
it ensures the stability of the solutions of the equations of motion. One shows that it is a weaker condition on
σeq(ε,θ) than the thermostatic stability condition.

The system of equations (1) describing the motion of an isolated (r = 0) thermoelastic bar (6) in the
absence of conductivity (κ = 0) is called the adiabatic thermoelastic system, and can be written as

∂

∂ t

 v
ε

θ

−


0 1
ρ

∂σeq
∂ε

1
ρ

∂σeq
∂θ

1 0 0
θ

ρCeq

∂σeq
∂θ

0 0

 ∂

∂X

 v
ε

θ

=

0
0
0

 . (18)

This system is appropriate for the description of wave propagation since the heat conductivity can be ignored
outside the narrow transition zones. The type of system is given by the eigenvalues and the right eigenvec-
tors of the above matrix. The eigenvalues are solution of the equation λ

[
λ 2−

( 1
ρ

∂σeq
∂ε

+ θ

ρ2Ceq

( ∂σeq
∂θ

)2)] = 0.
This system is strictly hyperbolic if the three eigenvalues are real and distinct, and the corresponding right
eigenvectors are linearly independent. One shows that this happens if and only if

U2(ε,θ)≡ 1
ρ

∂σeq

∂ε
+

θ

ρ2Ceq

(
∂σeq

∂θ

)2

> 0. (19)

In this case U(ε,θ) is called the sound speed at the state (ε,θ).
It is obvious that the hyperbolicity condition (19) is fulfilled for any pair (ε,θ) such that ∂σeq(ε,θ)

∂ε
≥ 0,

i.e. for ε ∈ (∞,ε−m (θ))∪ (ε−M(θ),ε+
M(θ))∪ (ε+

m (θ),∞). When the slope of the isotherm σ = σeq(ε,θ) be-
comes negative the system may changes type becoming an elliptic one. Therefore, we consider an additional
assumption which allows to define the constitutive domain of phases.
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H4) Let us suppose that at each temperature θ ∈ [θm,θM] there exists at least a value ε∗ ∈ (ε−m (θ),ε−M(θ))
and at least a value ε∗ ∈(ε+

M(θ),ε+
m (θ)) such that U2(ε∗,θ) < 0, i.e. the hyperbolicity condition is violated.

Then one proves there exists ε = γ
±
M(θ) and ε = γ±m (θ) (Fig. 2) such that

ε
−
m (θ) < γ

−
m (θ) < γ

−
M(θ) < ε

−
M(θ) < ε

+
M(θ) < γ

+
M(θ) < γ

+
m (θ) < ε

+
m (θ) (20)

with the property that

U2(ε,θ) > 0 for ε ∈ (∞,γ−m (θ))∪ (γ−M(θ),γ+
M(θ))∪ (γ+

m (θ),∞),

U2(ε,θ) < 0 for ε ∈ (γ−m (θ),γ−M(θ))∪ (γ+
M(θ),γ+

m (θ)).

We also suppose that at each temperature θ < θm there exists at least an ε∗ ∈ (ε−m (θ),ε+
m (θ)) such that

the hyperbolicity condition is violated. Then one proves there exists ε = γ−m (θ) and ε = γ+
m (θ) such that

U2(ε,θ) > 0 for ε ∈ (∞,γ−m (θ))∪ (γ+
m (θ),∞), and U2(ε,θ) < 0 for ε ∈ (γ−m (θ),γ+

m (θ)).

Moreover, we suppose in the following that the boundary curves ε = γ±m (θ), ε = γ
±
M(θ) are continuously

differentiable and have the following properties:

dγ
+
M(θ)
dθ

> 0,
dγ
−
M(θ)
dθ

< 0, for θ ∈ (θm,θM);
dγ+

m (θ)
dθ

> 0,
dγ−m (θ)

dθ
< 0, for θ < θM

γ
+
M(θm) = γ

−
M(θm), γ

−
m (θM) = γ

−
M(θM), γ

+
m (θM) = γ

+
M(θM). (21)

If we denote ς
±
M(θ)= σeq(γ±M(θ),θ) and ς±m (θ)= σeq(γ±m (θ),θ) we remark that ς

+
M(θ)< σ

+
M(θ), ς+

m (θ)>
σ+

m (θ), ς
−
M(θ) > σ

−
M(θ), ς−m (θ) < σ−m (θ) (Fig. 1).

Therefore, the functions ε = ε±m (θ) and ε = ε
±
M(θ) associated with the change of monotonicity of the

isotherms σ = σeq(ε,θ) delimitate the domains of thermostatic stability in the ε − θ plane. On the other
side, the constitutive functions ε = γ±m (θ) and ε = γ

±
M(θ) bound the regions of hyperbolicity/ellipticity of

the adiabatic thermoelastic system in the same plane, i.e the domains of dynamic stability (Fig. 2). Indeed,
it is known that if the initial boundary-value data belong to the domains of hyperbolicity of the adiabatic
thermoelastic system the problems are well-posed and even more they are stable according to a linearized
stability analysis. In the domains of ellipticity the initial-boundary data are ill-posed in the sense of Hadamard.
Thus, possible solutions belonging to these regions will be dismissed in a pure thermoelastic approach of
phase transitions.

We can identify the stable phases of the material, denoted by A phase and M± phases, with the domains
of hyperbolicity of the adiabatic system, while the unstable phases, denoted by I ± phases, with the domains
of ellipticity. For instance, in the case θ ∈ [θm,θM], we say that a particle X at a time t is in the austenitic phase
A if the pair (ε,θ)(X , t) ∈A where A = {(ε,θ)|γ−M(θ) < ε < γ

+
M(θ)}. The other stable phases in which the

material may exist are M + = {(ε,θ)| ε > γ
+
M(θ)}, M− = {(ε,θ)| ε < γ

−
M(θ)}, while the so-called unstable

phases are I + = {(ε,θ)| γ+
M(θ) < ε < γ+

m (θ)}, I − = {(ε,θ)| γ−m (θ) < ε < γ
−
M(θ)} (Fig. 2).

3.4 Jump relations for thermoelastic materials

If Ṡ > 0 we call the material at the + side of the discontinuity to be in front of the wave, while the material
at the − side to be in back of the wave. The wave discontinuity is said to be compressive if the deformation
decreases after the passage of the wave (ε− < ε+), and expansive if the deformation increases (ε− > ε+). If
Ṡ < 0 we have to change only + to − and correspondingly the terminology. In the present setting a strain
discontinuity is called either a thermoelastic shock wave, or a phase boundary, according to whether the
particles separated by the discontinuity are in the same phase, or in distinct phases. We only consider the case
when q+ = q− = 0. According to (2) and (4) the relations between the front and back state read

v−− v+ =−Ṡ(ε−− ε
+), σeq(ε−,θ−)−σeq(ε+,θ+) = ρ Ṡ2(ε−− ε

+), (22)

ρ(eeq(ε−,θ−)− eeq(ε+,θ+)) =
1

2
(σeq(ε−,θ−)+σeq(ε+,θ+))(ε−− ε

+), (23)

ρ Ṡ
(
ηeq(ε−,θ−)−ηeq(ε+,θ+)

)
≥ 0. (24)
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Let us suppose that the front state (ε+,θ+,v+) is known. Then, relations (22)-(23) represent an algebraic
non-linear system for the unknown back state (ε−,θ−,v−) and the speed of the discontinuity Ṡ. Depending on
the thermoelastic constitutive assumptions this system may generally be solved if one of this four quantities
is prescribed. In addition such a solution have to satisfy the entropy inequality (24). Let us note that, the
Rankine-Hugoniot equation (23) provides only restrictions, on the back states (ε,θ) which can be reached in
a shock process which has (ε+,θ+) as a front state. Moreover, this restriction does not depend on the shock
speed Ṡ. We denote by

H(ε,θ ;ε
+,θ+) = ρeeq(ε,θ)−ρe+− 1

2
(σeq(ε,θ)+σ

+)(ε− ε
+) (25)

the Hugoniot function based at (ε+,θ+) where e+ = eeq(ε+,θ+) and σ+ = σeq(ε+,θ+). The set {(ε,θ)
| H(ε,θ ;ε+,θ+) = 0} is called the Hugoniot set (locus) based at (ε+,θ+) in the ε−θ plane.

In the smooth case S1, the Hugoniot function is at least of C1 class. If σeq(ε,θ) satisfies the weaker
smoothness assumption S2 then it is continuous, piecewise smooth, and

∂H(ε,θ)
∂θ

= ρCeq(ε,θ)− 1
2

∂σeq(ε,θ)
∂θ

(ε− ε
+) > 0, (26)

at the points where the derivative makes sense. The positivity is here an assumption justified by the fact that
we do not consider shocks of arbitrary intensity, and in general, for real materials | ∂σeq(ε,θ)

∂θ
|<< ρCeq(ε,θ).

Situations when the Hugoniot set is not curve-like and can bifurcate has been considered by Dunn and Fosdick
[6]. According to (26) the implicit function theorem ensures that the equation H(ε,θ ;ε+,θ+) = 0 can be
solved (at least locally) with respect to θ . We suppose in the following that this unique solution

θ = ΘH(ε;ε
+,θ+), (27)

called the temperature-strain Hugoniot curve (locus) based at (ε+,θ+) exists globally and has the properties
that θ+ =ΘH(ε+;ε+,θ+) and H(ε,ΘH(ε;ε+,θ+);ε+,θ+) = 0 on its domain of definition. If the smoothness
assumption S1 is satisfied, the function (27) is at least of C1 class, while if the smoothness assumption S2 is
fulfilled, it is continuous and piece-wise smooth. This function describes all those states in the ε − θ plane
that are potentially attainable as back states in a shock process which has (ε+,θ+) as a front state.

The image of (27) through the function σ = σeq(ε,θ) in the ε−σ plane is

σ = σH(ε;ε
+,θ+)def= σeq(ε,ΘH(ε;ε

+,θ+)), (28)

and is called the stress-strain Hugoniot curve (locus) based at (ε+,σ+). This function describes all reachable
(σ ,ε) back states in a wave discontinuity which has (ε+,σ+) as a front state.

4 A thermal Maxwellian rate-type approach to phase transitions

It is well known that initial-boundary value problems for the adiabatic system of thermoelasticity (18) can
lead to non-unique discontinuous solutions. We therefore need a selection criterion to identify meaningful so-
lutions. We use in the following a standard procedure to establish such a criterion. This procedure asserts that:
a strong propagating discontinuity is admissible within the thermoelastic theory if and only if the limit values
(ε±,θ±,v±) on either side of the discontinuity can be connected by a traveling wave solution constructed
within an augmented theory.

We introduce in the following an augmented theory whose dissipative mechanisms are described by regu-
larizing terms characterizing stress relaxation and pseudo-creep processes toward equilibrium between phases
and by heat conduction. Thus we consider in this paper the following Maxwellian rate-type constitutive rela-
tion

∂σ

∂ t
−E

∂ε

∂ t
=−E

µ
(σ −σeq(ε,θ)), (29)

where E = const. > 0 is the dynamic Young modulus, µ = const. > 0 is a Newtonian viscosity coefficient and
σ = σeq(ε,θ) is the equilibrium state equation satisfying assumptions H1 - H4. Let us note that τ = µ

E is a
relaxation time and k = E

µ
is called Maxwellian viscosity coefficient. When µ→ 0 (or, k→∞) this constitutive

equation is seen as a rate-type approximation of the thermoelastic model.
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The rate-type constitutive equation (29) includes as a limiting case for E→ ∞ the Kelvin-Voigt model

∂ε

∂ t
=

1
µ

(σ −σeq(ε,θ)). (30)

We assume here that the Fourier law of heat conduction q = −κ
∂θ

∂X holds, where κ = const. > 0 is the
heat conductivity coefficient.

4.1 Thermodynamic considerations for the augmented theory.

If one uses the Helmholtz free energy ψ = e−θη , the entropy inequality (3) takes the form

−ρ
∂ψ

∂ t
+σ

∂ε

∂ t
−ρη

∂θ

∂ t
− q

θ

∂θ

∂X
≥ 0. (31)

By investigating the compatibility with the Clausius-Duhem inequality (31) of the Maxwellian rate-type ma-
terial (29) endowed with Fourier heat conduction law one obtains the following results (see also [11]). The
constitutive equation (29) admits a unique free energy function ψ = ψMxw(ε,σ ,θ) (modulo an additive func-
tion of temperature) if and only if the slope of the straight line connecting any two points of an equilibrium
isotherm is bounded from above by the instantaneous Young modulus E. Moreover, in what follows we sup-
pose there are two positive constants E∗ and E∗ such that

−E∗ ≤
σeq(ε1,θ)−σeq(ε2,θ)

ε1− ε2
≤ E∗ < E, for any ε1, ε2 and any θ . (32)

The free energy has to satisfy the following Cauchy problem for a first order PDE, i.e.

∂ψMxw

∂ε
+E

∂ψMxw

∂σ
=

σ

ρ
,

∂ψMxw

∂σ
(ε,σeq(ε,θ),θ) = 0, (33)

while the entropy, the intrinsic dissipation and the thermal dissipation are given, respectively by

η =−∂ψMxw

∂θ
(ε,σ ,θ), DMxw ≡

E
µ

ρ
∂ψMxw

∂σ
(ε,σ ,θ)(σ −σeq(ε,θ))≥ 0, Dth = κ

(
∂θ

∂X

)2
≥ 0. (34)

According to (33) the general form of the free energy function is

ρψMxw(ε,σ ,θ) =
σ2

2E
+ϕ(σ −Eε,θ), (35)

where ϕ = ϕ(τ,θ) satisfies relation

∂ϕ

∂τ
(σeq(ε,θ)−Eε ,θ) =−

σeq(ε,θ)
E

. (36)

Let us denote by h(ε,θ) = σeq(ε,θ)−Eε . Condition (32) ensures that function h is invertible with respect to
ε for any fixed θ . We denote by h−1(·,θ) this function. Therefore, for any triplet (ε,σ ,θ) there is a unique
ε̃ = ε̃(ε,σ ,θ) = h−1(σ −Eε,θ) such that

σ −Eε = h(ε̃,θ) = σeq(ε̃,θ)−E ε̃. (37)

Thus, the free energy function of the Maxwellian rate-type constitutive equation (29) is explicitly determined
(up to an additive function of θ ) by the equilibrium relation σ = σeq(ε,θ) and the Young modulus E through
relation

ρψMxw(ε,σ ,θ) =
σ2

2E
−

σ2
eq(ε̃,θ)

2E
+
∫

ε̃

ε0

σeq(s,θ)ds+ρφ(θ), (38)

where φ(θ) is a smooth function. The entropy function is given by

ρηMxw(ε,σ ,θ) =−
∫

ε̃

ε0

∂σeq(s,θ)
∂θ

ds−ρ
dφ(θ)

dθ
, (39)
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and the specific heat by

CMxw(ε,σ ,θ) = θ
∂ηMxw

∂θ
(ε,σ ,θ) =−θ

ρ

(∫ ε̃

ε0

∂ 2σeq(s,θ)
∂θ 2 ds+

( ∂σeq(ε̃,θ)
∂θ

)2

E− ∂σeq(ε̃,θ)
∂ε

+ρ
d2φ(θ)

dθ 2

)
. (40)

If the equilibrium curve σ = σeq(ε,θ) satisfies the smoothness assumptions S1 then the free energy ψMxw(ε,σ ,θ)
and the entropy ηMxw(ε,σ ,θ) are at least of C1 class, while the specific heat CMxw(ε,σ ,θ) is at least of C0

class on the domain of definition. If the smoothness assumptions S2 are satisfied, i.e. σ = σeq(ε,θ) is con-
tinuous and piecewise smooth, then the free energy ψMxw(ε,σ ,θ) is still of C1 class, the entropy is of C0

class and piecewise smooth, while the specific heat CMxw(ε,σ ,θ) is a discontinuous and piecewise smooth
function.

One can show that the following two relations hold

ρE
∂ψMxw

∂σ
(ε,σ ,θ) = σ −σeq(ε̃,θ) = E(ε− ε̃) = E(ε−h−1(σ −Eε,θ)), (41)

E
E +E∗

(σ −σeq(ε,θ))2 ≤ Eρ
∂ψMxw

∂σ
(ε,σ ,θ)(σ −σeq(ε,θ))≤ E

E−E∗
(σ −σeq(ε,θ))2. (42)

Thus, from (34)2 one gets the following estimate on the intrinsic dissipation generated by the Maxwellian
rate-type model

E
µ(E +E∗)

(σ −σeq(ε,θ))2 ≤ DMxw(ε,σ ,θ)≤ E
µ(E−E∗)

(σ −σeq(ε,θ))2. (43)

Let us note that the free energy, entropy and internal energy of the Maxwellian model at equilibrium
are just the free energy, entropy and internal energy of the thermoelastic model σ = σeq(ε,σ), that is,
ψMxw(ε,σeq(ε,θ),θ) = ψeq(ε,σ), ηMxw(ε,σeq(ε,θ),θ) = ηeq(ε,σ) and eMxw(ε,σeq(ε,θ),θ) = eeq(ε,σ).
Indeed, from (37) and (38) we get that σ = σeq(ε,θ) involve ε = ε̃ , wherefrom by using (38) and (39) we
obtain relations (10). Concerning the relation between the specific heat of the Maxwellian model (40) at
equilibrium and the specific heat of the thermoelastic model (11) we get by using notation (19)

CMxw(ε,σeq(ε,θ),θ) = Ceq(ε,θ)− θ

ρ

( ∂σeq(ε,θ)
∂θ

)2(
E− ∂σeq(ε,θ)

∂ε

) = Ceq(ε,θ)
E−ρλ 2(ε,θ)

E− ∂σeq
∂ε

(ε,θ)
. (44)

Therefore, a necessary condition on the constitutive functions σ = σeq(ε,θ) and E to ensure the positiveness
of the specific heat of the rate-type Maxwellian model is

ρλ
2(ε,θ) =

∂σeq

∂ε
+

θ

ρCeq(ε,θ)

(
∂σeq

∂θ

)2

< E. (45)

In order to determine the unknown function φ(θ) in (38) we suppose again that the specific heat of the
thermoelastic model at a constant strain ε0 is known over an interval of temperatures, i.e we may use again
the equation (12).

By investigating the properties of the thermodynamic functions of the Maxwellian model when E → ∞

we obtain

lim
E→∞

ψMxw(ε,σ ,θ) = ψeq(ε,θ), lim
E→∞

ηMxw(ε,σ ,θ) = ηeq(ε,θ), lim
E→∞

CMxw(ε,σ ,θ) = Ceq(ε,θ), (46)

that means, the free energy, entropy, internal energy and specific heat of the Kelvin-Voigt model coincide with
the free energy, entropy, internal energy and specific heat of the thermoelastic model (6).

Consequently, the internal dissipation generated in a smooth process by the Kelvin-Voigt model is obtained
from (43) and (30) as

DKV (ε,σ ,θ) = lim
E→∞

DMxw(ε,σ ,θ) =
1
µ

(σ −σeq(ε,θ))2 = µ
∂ε

∂ t

2

. (47)
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By using the balance laws (1), the constitutive equations (29)-(30) and relations (33)-(34) we can establish
the following energy identities. For the thermal Maxwellian rate-type material with Fourier heat conduction
law the smooth solutions of the corresponding PDEqs system satisfies

ρ
∂eMxw(ε,σ ,θ)

∂ t = σ
∂ε

∂ t −
E
µ ρ

∂ψMxw
∂σ

(σ −σeq(ε,θ))+ E
µ ρθ

∂
2
ψMxw

∂σ∂θ
(σ −σeq(ε,θ))+ρCMxw

∂θ

∂ t ,(48)

ρ
∂ηMxw(ε,σ ,θ)

∂ t + ∂

∂X

( q
θ

)
= 1

θ

(
DMxw(ε,σ ,θ)+Dth(θ)

)
≡ PMxw(ε,σ ,θ)≥ 0. (49)

For a non-isothermal Kelvin-Voigt material with Fourier heat conduction law the smooth solutions of the
corresponding PDEqs system satisfies

ρ
∂eeq(ε,θ)

∂ t = σeq(ε,θ)∂ε

∂ t −
1
µ (σ −σeq(ε,θ))2− 1

µ ρθ
∂

2
ψeq

∂ε∂θ
(σ −σeq(ε,θ))+ρCeq

∂θ

∂ t , (50)

ρ
∂ηeq(ε,θ)

∂ t + ∂

∂X

( q
θ

)
= 1

θ

(
DKV (ε,σ ,θ)+Dth(θ)

)
≡ PKV (ε,θ)≥ 0. (51)

Let us note that in relations (48)1 and (50)1 the first right term with minus sign is the working, while the
second, the third, and the forth right-term represents the contribution to the heating of the intrinsic dissipation,
latent heat and specific heat, respectively. We also note that the right-hand terms in (49) and (51), denoted
by PMxw(ε,σ ,θ) and PKV (ε,θ), represent the total entropy production corresponding to a heat conducting
smooth process of a Maxwellian material and a Kelvin-Voigt material, respectively.

The system of equations (1) and (29), with e = eMxw(ε,σ ,θ), describing the adiabatic motion (q = 0) of
a Maxwellian rate-type bar can be written as a relaxation system (very small µ) with sources

∂

∂ t

 v
ε

θ

σ

−
 0 0 0 1/ρ

1 0 0 0
0 0 0 0
E 0 0 0

 ∂

∂X

 v
ε

θ

σ

=
E
µ

(
σ −σeq(ε,θ)

)


0
0

1
CMxw

(
∂ψMxw

∂σ
−θ

∂
2
ψMxw

∂σ∂θ

)
−1

 . (52)

It is easy to verify that this system is always hyperbolic semi-linear irrespective of the slope with respect
to ε of the equilibrium curve σ = σeq(ε,θ) as long as the dynamic Young’s modulus E is strictly positive
and finite. Indeed, this system is semi-linear since all non-linear terms are included in the right part of (52)
and the eigenvalues of the matrix are given by λ = ±

√
E
ρ

and λ = 0 (twice). Therefore, initial-boundary

value problems are now well-posed even in the unstable domains I ± where phase transformations occur.
One expects that when µ → 0 solutions of the rate-type system (52) ”approach” solutions of the adiabatic
thermoelastic system (18) in the sense that the stress σ is rapidly driven back to the equilibrium σeq(ε,θ),
except perhaps in narrow phase transition time intervals where σ , ε , θ and v have a very steep variation.

The adiabatic Kelvin-Voigt rate-type system (1) and (30), where e = eeq(ε,θ), can be viewed as a limiting
case of the Maxwellian rate-type system for E→∞. In this case the characteristic directions of the hyperbolic
system in the X− t plane tend to infinite, i.e. the hyperbolic system (52) transforms into a parabolic one.

5 Traveling wave solutions.

In the following we seek steady wave solutions for the system of six equations composed by the Maxwellian
rate-type constitutive equation (29) (or, the Kelvin-Voigt model (30)), the corresponding internal energy law
e = eMxw(ε,σ ,θ), (or, e = eeq(ε,θ)), the Fourier law and the balance laws (1) when r = 0. These solutions,
sought in the form (ε,σ ,θ ,v,q,e)=(ε̂, σ̂ , θ̂ , v̂, q̂, ê)(ξ ), where ξ = X − Ṡt, Ṡ = const. satisfy the boundary
conditions

lim
ξ→±∞

(ε̂, σ̂ , θ̂ , v̂, q̂, ê)(ξ ) = (ε±,σ± = σeq(ε±,θ±),θ±,v±,0,e± = eeq(ε±,θ±)), (53)

where ε+, v+, θ+, ε−, v−, θ− are given values.
In general, such traveling wave solutions of the rate-type systems represent a profile layer which con-

nects two thermomechanical equilibrium states of the material and approximates a strong discontinuity of the
adiabatic thermoelastic system propagating with a constant velocity Ṡ.
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Let us look first smooth steady wave solutions. We denote by prime the derivative with respect to ξ . Inde-
pendently of any constitutive assumptions we get from balance laws (1) and entropy inequality (3) relations

v̂′(ξ )+ Ṡε̂
′(ξ ) = 0, σ̂

′(ξ )+ρ Ṡv̂′(ξ ) = 0, Ṡ
(
ρ ê′(ξ )− σ̂(ξ )ε̂ ′(ξ )

)
= q̂′(ξ ), ρ Ṡη

′ ≤
( q

θ

)′
, (54)

wherefrom, by using the boundary conditions (53) one gets

v̂(ξ ) = v+− Ṡ(ε̂(ξ )− ε
+), σ̂(ξ ) = σR(ε̂(ξ ))def= σ

+ +ρ Ṡ2(ε̂(ξ )− ε
+),

q̂(ξ ) = Ṡ
(
ρ ê(ξ )−ρe+− 1

2
(ε̂(ξ )− ε

+)(σ̂(ξ )+σ
+)
)
, q̂(ξ )≤ ρ Ṡθ̂(ξ )(η̂(ξ )−η

+). (55)

If we set ξ →−∞ we recover the Rankine-Hugoniot relations (22)-(23) and the entropy jump inequality (24)
for the adiabatic thermoelastic system . Therefore, if Ṡ > 0 and (ε+,θ+) is a given front state of a wave
discontinuity then the pair (ε−,θ−) has to belong to the Hugoniot set based at (ε+,θ+) given by (25), i.e.
H(ε−,θ−;ε+,θ+) = 0 or equivalently θ− = ΘH(ε−;ε+,θ+). If Ṡ < 0 and (ε−,θ−) is a given front state
of a wave discontinuity then the pair (ε+,θ+) has to belong to the Hugoniot set based at (ε−,θ−), i.e.
H(ε+,θ+;ε−,θ−) = 0 or equivalently θ+ = ΘH(ε+;ε−,θ−). Moreover, the constant steady wave speed Ṡ is
determined by the equilibrium states to be connected through relation

ρ Ṡ2 =
σeq(ε+,θ+)−σeq(ε−,θ−)

ε+− ε−
< E. (56)

Let us note that relation (55)2 asserts that in a steady structured wave the strain-stress pairs (ε̂(ξ ), σ̂(ξ ))
belong to a straight line of slope ρ Ṡ2 in the σ − ε plane. This is called the Rayleigh line construction. There-
fore, the function σ = σR(ε) defined above is called the Rayleigh line.

By using the Maxwellian rate-type constitutive equation (29) and the Fourier law we get that ε = ε̂(ξ )
and θ = θ̂(ξ ) have to satisfy the non-linear autonomous system with boundary conditions

ε̂ ′ =− E
µ Ṡ(E−ρ Ṡ2)

R(ε̂, θ̂), limξ→±∞ ε̂(ξ ) = ε±

θ̂ ′ =− Ṡ
κ HMxw(ε̂, θ̂), limξ→±∞ θ̂(ξ ) = θ±,

(57)

where, if Ṡ > 0,

R(ε,θ ;ε
+,θ+,ε−)≡ σR(ε)−σeq(ε,θ) = σ

+ +ρ Ṡ2(ε− ε
+)−σeq(ε,θ), (58)

HMxw(ε,θ ;ε
+,θ+,ε−)≡ ρeMxw

(
ε,σR(ε),θ

)
−ρe+− 1

2
(
ε− ε

+)(
σR(ε)+σ

+). (59)

and (ε+,θ+) represents the front state, while (ε−,θ−) is the Hugoniot state, i.e. θ− = ΘH(ε−;ε+,θ+).
If Ṡ < 0, the initial front state is (ε−,θ−) and (ε+,θ+) is the Hugoniot state, i.e. θ+ = ΘH(ε+;ε−,θ−),

then the superscripts + and - have to be invert in (59). For simplicity, when there are no ambiguities we will
drop from the notations of R and HMxw their dependence on (ε+,θ+) and (ε−,θ−).

According to (46), by making E → ∞ in the system (57) we obtain the non-linear autonomous system
describing the traveling wave solutions for the Kelvin-Voigt model (30) with Fourier heat conduction law,

ε̂ ′ =− 1
µ Ṡ

R(ε̂, θ̂), limξ→±∞ ε̂(ξ ) = ε±

θ̂ ′ =− Ṡ
κ HKV (ε̂, θ̂), limξ→±∞ θ̂(ξ ) = θ±,

(60)

where, if Ṡ > 0,

HKV (ε,θ ;ε
+,θ+,ε−)≡ ρeeq

(
ε,θ
)
−ρe+− 1

2
(
ε− ε

+)(
σR(ε)+σ

+). (61)

It is useful to note that the pairs (ε±,θ±) are fixed points for both dynamical systems (57), and (60).
Indeed, according to (56) we have R(ε±,θ±) = 0. On the other side, since eMxw(ε±,σeq(ε±,θ±),θ±) =
eeq(ε±,θ±) it follows HMxw(ε±,θ±) = HKV (ε±,θ±) = H(ε±,θ±) = 0. In the ε −σ plane that means the
pairs (ε±,σ±) represent the intersection of the Hugoniot locus (28) with the Rayleigh line.
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Remark. Let us note that functions HMxw(ε,θ ;ε+,θ+,ε−) and HKV (ε,θ ;ε+,θ+,ε−) resemble with the
Hugoniot function H(ε,θ ;ε+,θ+) based at (ε+,θ+) defined in (25). In both cases the equilibrium response
function σ = σeq(ε,θ) is replaced by the Rayleigh line σ = σR(ε). A second difference appears only for
HMxw. In this case the internal energy eeq(ε,θ) of the thermoelastic model is replaced with the internal energy
of the rate-type Maxwellian model (29) along the Rayleigh line, i.e. eMxw(ε,σR(ε),θ). For future use one
shows that

HMxw(ε,θ) = H(ε,θ)+ρeMxw(ε,σR(ε),θ)−ρeeq(ε,θ)− 1
2
(ε− ε

+)R(ε,θ), (62)

HKV (ε,θ) = H(ε,θ)− 1
2
(ε− ε

+)R(ε,θ). (63)

The question to be answered in the following concerns the conditions which ensure the existence and
uniqueness of traveling wave solutions for the system (57), or (60), when the equilibrium state equation
σ = σeq(ε,θ) satisfies our special constitutive assumptions H1-H4. These conditions provide also a selection
criterion for weak solutions of the adiabatic thermoelastic system (18).

5.1 Structuring mechanism: only viscous dissipation

We are first interested to determine the admissibility condition induced by the Maxwellian rate-type approach
(29), or by the Kelvin-Voigt model (30), in the absence of heat conduction.

5.1.1 Admissibility condition: chord criterion with respect to the Hugoniot locus in the strain-stress plane

We say that an elastic shock wave or a phase boundary is an admissible weak solution for the adiabatic
thermoelastic system if there exists a unique traveling wave (ε(ξ ),θ(ξ ),v(ξ )) provided by the augmented
constitutive approach which connects the limit values (ε±,θ±,v±). We say that the traveling wave describes
a shock layer if (ε±,θ±) are in the same phase, or an interphase transition layer if (ε±,θ±) are in different
phases. We designate them in a generic way as a profile layer.

We derive in the following an useful and practical criterion which selects physically admissible shock
waves or phase boundaries for the thermoelastic adiabatic system. This selection criterion is just the chord
criterion with respect to the Hugoniot locus in the strain-stress plane σ = σH(ε;ε+,θ+) defined by (28).

In order to clarify our result we briefly remind the case of isothermal elasticity with non-monotone stress-
strain relation. In this case the PDEs system is composed by equations (1)1−2 and an isothermal equilibrium
curve σ = σeq(ε). We have shown in Făciu and Molinari [9, Part II] that by considering the Maxwellian
rate-type approach as an augmented theory for the non-monotone elastic model we obtain the same viscosity
admissibility criterion as that obtained by Pego [27] using Kelvin-Voigt isothermal viscoelastic constitutive
equation (see also Slemrod [30]). According to the traveling wave analysis for the rate-type system one has
shown that the Maxwellian viscosity criterion in the isothermal case is equivalent with the chord criterion with
respect to the elastic constitutive equation σ = σeq(ε) which claims that: a compressive wave discontinuity,
i.e. (ε+− ε−)Ṡ > 0, is admissible iff the chord which joins (ε+,σ+ = σeq(ε+)) to (ε−,σ− = σeq(ε−)) lies
below the graph of the function σ = σeq(ε) for ε between ε+ and ε−, while an expansive wave discontinuity,
i.e. (ε+− ε−)Ṡ < 0, is admissible iff the chord lies above the graph in the same interval.

The results obtained below extends the above condition within the adiabatic thermoelastic theory.

Proposition 1 Let us suppose that the thermoelastic constitutive equation σ = σeq(ε,θ) satisfies the general
assumptions H1-H4, which includes the case of negative Grüneisen coefficients. Then the viscosity criterion
generated by the Maxwellian rate type approach (29), or by the Kelvin-Voigt model (30), in the absence of
heat conduction is equivalent with the following selection criterion.

Chord criterion with respect to the Hugoniot locus in the strain-stress plane.
If Ṡ > 0, the front state is (ε+,θ+) and the Hugoniot back state is (ε−,θ−) then a compressive wave

discontinuity is admissible iff the Rayleigh line lies below the Hugoniot locus, i.e.

σR(ε) = σ
+ +ρ Ṡ2(ε− ε

+) < σH(ε;ε
+,θ+), for any ε ∈ (ε−,ε+), (64)
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and an expansive wave discontinuity is admissible iff the Rayleigh line lies above the Hugoniot locus, i.e.

σR(ε) = σ
+ +ρ Ṡ2(ε− ε

+) > σH(ε;ε
+,θ+), for any ε ∈ (ε+,ε−). (65)

If Ṡ < 0, the front state is (ε−,θ−) and the Hugoniot back state is (ε+,θ+) then the above statement
remains valid if we invert superscripts + with - in relations (64) and (65).

This result is related with the extended entropy condition for gas dynamic equations of Liu [21]. When
the Maxwellian approach (29) is coupled with the Fourier heat we show in Sect. 5.2 that the chord criterion
with respect to the Hugoniot locus is also an admissibility condition if additional constitutive assumptions are
fulfilled, or if the viscosity effects dominate the heat conductivity effects (see also Pego [26]).

We have to prove in the following that conditions of the type (64)-(65) are necessary and sufficient for the
existence of a unique profile layer connecting the limit values (ε±,θ±).

5.1.2 Traveling waves for Maxwellian rate-type model (29) without heat conduction.

The only structuring parameters of these layers are the viscosity µ and the dynamic Young’s modulus E. Such
traveling waves are solutions of the problem

ε̂ ′ = − E
µ Ṡ(E−ρ Ṡ2)

R(ε̂, θ̂), limξ→±∞ ε̂(ξ ) = ε±,

0 = HMxw(ε̂, θ̂).
(66)

Let us consider Ṡ > 0 and (ε+,θ+) a fixed front state and (ε−,θ−) a Hugoniot state, i.e. θ−=ΘH(ε−;ε+,θ+).
The strain-temperature pair (ε̂(ξ ), θ̂(ξ )) has to satisfy the algebraic equation (66)2 where function HMxw(ε̂, θ̂)
is given by (59). The set {(ε,θ) | HMxw(ε,θ ;ε+,θ+,ε−) = 0} describes the trajectory in the ε−θ plane of a
traveling wave governed by a Maxwellian rate-type dissipative mechanism in the absence of heat conduction.
Let us note that HMxw(ε±,θ±;ε+,θ+,ε−) = 0. The function HMxw(ε,θ) is at least of C1 class if the smooth-
ness assumption S1 is satisfied and it is a continuous and piecewise C1 function on its domain of definition
for the weaker assumption S2. Since ∂HMxw

∂θ
(ε,θ) = ρ

∂eMxw(ε,σR(ε),θ)
∂θ

= ρCMxw(ε,σR(ε),θ) > 0 at the points
where the derivative makes sense, by using the theorem of implicit function it can be shown that the equation
HMxw(ε,θ) = 0 can be solved at least locally with respect to ε . In the following we suppose that it can be
solved globally, that means, there exists a unique function

θ = ΘMxw(ε;ε
+,θ+,ε−), (67)

with the property that HMxw(ε,ΘMxw(ε;ε+,θ+,ε−)) = 0 for ε belonging to an interval which contains ε+ and
ε− and ΘMxw(ε±;ε+,θ+,ε−) = θ±. This function is at least of C1 class if assumption S1 is satisfied and it is
continuous and piecewise C1 for the weaker assumption S2. Its image through the function σ = σeq(ε,θ) in
the ε−σ plane is given by

σ = σMxw(ε;ε
+,θ+,ε−)def= σeq

(
ε,ΘMxw(ε;ε

+,θ+,ε−)
)
, (68)

and connects the states (ε±,σ±). It is useful to note that σ± = σMxw(ε±) = σH(ε±) = σeq(ε±,θ±).
By using the above notations we get from (66) that ε = ε̂(ξ ) has to be solution of the problem

ε̂
′ =− E

µ Ṡ(E−ρ Ṡ2)

(
σ

+ +ρ Ṡ2(ε̂− ε
+)−σMxw(ε̂;ε

+,θ+,θ−)
)
, lim

ξ→±
ε̂(ξ ) = ε

± (69)

It is already known from the Maxwellian isothermal case studied in [9, Part II] that a solution of the problem
(69) exists if and only if the chord criterion with respect to the curve σ = σMxw(ε) is fulfilled.

Thus, for a right-facing discontinuity Ṡ > 0, in the compressive case (ε− < ε+), the Rayleigh line has to
lie below the curve σMxw(ε), i.e. σR(ε) = σ+ + ρ Ṡ2(ε − ε+) < σMxw(ε;ε+,θ+,ε−), for any ε ∈ (ε−,ε+),
while for the expansive case (ε+ < ε−), the Rayleigh line has to lie above, i.e. σR(ε) = σ+ +ρ Ṡ2(ε− ε+) >
σMxw(ε;ε+,θ+,ε−), for any ε ∈ (ε+,ε−).

For a left-facing wave Ṡ < 0, when the front state is (ε−,θ−) and the Hugoniot state is (ε+,θ+) the
admissibility condition is obtained by inverting the superscripts + and - in the above relations.
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Lemma 1 The chord criterion with respect to the curve σ = σMxw(ε) is equivalent with the chord criterion
with respect to the Hugoniot curve σ = σH(ε).

Proof. Let us consider for instance the expansive case of a forward propagating discontinuity, that is Ṡ > 0
and ε+ < ε−. We suppose first that the chord criterion with respect to the curve σ = σMxw(ε) is fulfilled, that
is σR(ε) = σ+ +ρ Ṡ2(ε−ε+) > σMxw(ε;ε+,θ+,ε−), for any ε ∈ (ε+,ε−). We prove that the chord criterion
with respect to the Hugoniot curve has to be also satisfied, that is σR(ε) = σ+ +ρ Ṡ2(ε−ε+) > σH(ε;ε+,θ+)
for any ε ∈ (ε+,ε−). The proof is based by reduction to the absurd. Let us suppose there is an ε∗ ∈ (ε+,ε−)
such that σR(ε∗) = σH(ε∗;ε+,θ+). We denote by θ ∗ = θH(ε∗;ε+,θ+). Therefore, H(ε∗,θ ∗;ε+,θ+) =
0 and σR(ε∗) = σH(ε∗;ε+,θ+) ≡ σeq(ε∗,θH(ε∗;ε+,θ+)) = σeq(ε∗,θ ∗). By using (62) and the fact that
eMxw(ε,σeq(ε,θ),θ) = eeq(ε,θ) we get that HMxw(ε∗,θ ∗;ε+,θ+) = 0. Therefore, θ ∗ = θMxw(ε∗;ε+,θ+),
which implies σMxw(ε∗;ε+,θ+)≡ σeq(ε∗,θMxw(ε∗;ε+,θ+)) = σeq(ε∗,θ ∗) = σR(ε∗). Thus, it results a con-
tradiction with our initial assumption that the chord criterion with respect to σ = σMxw(ε) is satisfied for any
ε ∈ (ε+,ε−). The proof is similar for the compressive case and for a back propagating discontinuity Ṡ < 0.

In order to prove that the chord criterion with respect to the Hugoniot curve σ = σH(ε) implies the chord
criterion with respect to the curve σ = σMxw(ε) we use in a similar way the reduction to the absurd, the
definitions of these curves and relation (62). ut

Remark. This equivalence between the two chord criteria transfers the admissibility condition from a rela-
tion which depends on the energetic properties of the rate-type dissipative model, namely σ = σMxw(ε;ε+,θ+,ε−),
to a relation which depends only on the energetic properties of the thermoelastic constitutive model, namely
σ = σH(ε;ε+,θ+). That is way the chord criterion with respect to the Hugoniot locus is extremely useful in
practice.

The entropy production in a profile layer of Maxwell’s type, thermally non-conducting. Let us denote by
ψ̂(ε) ≡ ψMxw(ε,σR(ε),ΘMxw(ε)), η̂(ε) ≡ ηMxw(ε,σR(ε),ΘMxw(ε)) and ê(ε) ≡ eMxw(ε,σR(ε),ΘMxw(ε)),
where ε = ε̂(ξ ) is solution of (69), the free energy, entropy and internal energy along a viscous, heat non-
conducting profile layer generated by the Maxwellian rate-type model. By using relation (33) we get

σR(ε) = ρ
dê(ε)

dε
+(E−ρ Ṡ2)ρ

∂ψMxw

∂σ
(ε,σR(ε),ΘMxw(ε))−ρΘMxw(ε)

dη̂(ε)
dε

. (70)

Since HMxw(ε,ΘMxw(ε;ε+,θ+,ε−)) = 0 for any ε between ε+ and ε− one obtains from (59) the following
identities

ρ ê(ε)−ρe+ =
1
2
(ε− ε

+)(σ+ +σR(ε)), and ρ
dê(ε)

dε
= σR(ε). (71)

From (70) and (71)2 we derive

ρ
dη̂(ε)

dε
=

E−ρ Ṡ2

ΘMxw(ε)
ρ

∂ψMxw

∂σ
(ε,σR(ε),ΘMxw(ε)), (72)

wherefrom, by integration, we obtain

ρ(ηeq(ε+,θ+)−ηeq(ε−,θ−)) = ρ(η̂(ε+)− η̂(ε−)) =
∫

ε+

ε−

E−ρ Ṡ2

ΘMxw(ε)
ρ

∂ψMxw

∂σ
(ε,σR(ε),ΘMxw(ε))dε. (73)

According to relations (34), (49), (69) and (73) the total entropy production induced by a traveling wave
governed by a Maxwellian rate-type constitutive equation in the absence of heat conduction is given by

Ptrav
Mxw =

∫
∞

−∞

DMxw(ε̂, σ̂ , θ̂)
ΘMxw(ε̂)

dξ =
∫

∞

−∞

E
µ

ρ

ΘMxw(ε̂)
∂ψMxw

∂σ
(ε̂,σR(ε̂),ΘMxw(ε̂))

(
σR(ε̂)−σMxw(ε̂)

)
dξ

=−Ṡ
∫

∞

−∞

(E−ρ Ṡ2)
ΘMxw(ε̂)

ρ
∂ψMxw

∂σ
(ε̂,σR(ε̂),ΘMxw(ε̂))ε̂ ′dξ =−Ṡρ(ηeq(ε+,θ+)−ηeq(ε−,θ−))≥ 0. (74)

Therefore, in a Maxwellian thermally non-conducting profile layer, the entropy of the Hugoniot back state can
not be lower than the entropy of the front state. Moreover, the total entropy production Ptrav

Mxw of the traveling
wave solution does not depend on the viscosity and is, according to (24), exactly the entropy production of
a strong discontinuity compatible with the second law of thermodynamics for the associated thermoelastic
constitutive equation σ = σeq(ε,θ).
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5.1.3 Traveling waves for Kelvin-Voigt model (30) without heat conduction.

In this case, according to (60), the structure of the profile layer is only characterized by the viscosity µ and
the solution is given by the corresponding reduced system

ε̂ ′ =− 1
µ Ṡ R(ε̂, θ̂), limξ→±∞ ε̂(ξ ) = ε±

0 = HKV (ε̂, θ̂).
(75)

Therefore, all the strain-temperature pairs (ε̂(ξ ), θ̂(ξ )) have to satisfy the algebraic equation (75)2. The set
{(ε,θ) |HKV (ε,θ ;ε+,θ+,ε−) = 0} describes the trajectory in the ε−θ plane of the traveling wave governed
by a Kelvin-Voigt dissipative mechanism in the absence of heat conduction. The function HKV (ε,θ) is at least
of C1 class if the smoothness assumption S1 is satisfied and it is a continuous and piecewise C1 function on its
domain of definition for the weaker assumption S2. Moreover, at the points where the derivative makes sense
we have ∂HKV

∂θ
(ε,θ) = ρ

∂eeq
∂θ

(ε,θ) = ρCeq(ε,θ) > 0. Therefore, the above algebraic equation can be solved
with respect to ε . We suppose there exists a unique function

θ = ΘKV (ε;ε
+,θ+,ε−), (76)

with the properties that HKV (ε,ΘKV (ε;ε+,θ+,ε−)) = 0 for ε belonging to an interval which contains ε±,
and ΘKV (ε+;ε±,θ+,ε−) = θ±. Its image through the function σ = σeq(ε,θ) in the ε−σ plane is given by

σ = σKV (ε;ε
+,θ+,ε−)def= σeq

(
ε,ΘKV (ε;ε

+,θ+,ε−)
)
, (77)

and connects the states (ε±,σ±). It is useful to note that σ± = σKV (ε±) = σH(ε±) = σeq(ε±,θ±).
By using the above notations we get from (75) that ε = ε̂(ξ ) is solution of the problem

ε̂
′ =− 1

µ Ṡ

(
σ

+ +ρ Ṡ2(ε̂− ε
+)−σKV (ε̂;ε

+,θ+,ε−)
)
, lim

ξ→±
ε̂(ξ ) = ε

±. (78)

A solution of this problem exists iff a chord criterion with respect to the curve σ = σKV (ε) is fulfilled (see
Slemrod [30] and Pego [27]). One proves finally in a similar way as in Lemma 1 that the chord criterion
with respect to σ = σKV (ε) is equivalent with the chord criterion with respect to the Hugoniot curve σ =
σH(ε;ε+,θ+) given by relations (64)-(65).

The entropy production in a profile layer of Kelvin-Voigt’s type, thermally non-conducting. If we denote by
ψ̂(ε) = ψeq(ε,ΘKV (ε)), η̂(ε) = ηeq(ε,ΘKV (ε)) and ê(ε) = eeq(ε,ΘKV (ε)) the free energy, entropy and inter-
nal energy along the trajectory in the ε−θ plane of a a viscous, heat non-conducting profile layer generated
by the Kelvin-Voigt model we get immediately from (9)1,2 that

σKV (ε) = ρ
dê(ε)

dε
−ρΘKV (ε)

dη̂(ε)
dε

. (79)

Since HKV (ε,ΘKV (ε;ε+,θ+,ε−)) = 0 for any ε between ε+ and ε− we obtain from (61) by using the above
notations the following identities

ρ ê(ε)−ρe+ =
1
2
(ε− ε

+)(σ+ +σR(ε)), ρ
dê(ε)

dε
= σR(ε). (80)

From (79) and (80)2 we derive

ρ
dη̂(ε)

dε
=

σR(ε)−σKV (ε)
ΘKV (ε)

(81)

wherefrom, we obtain

ρ(ηeq(ε+,θ+)−ηeq(ε−,θ−)) = ρ(η̂(ε+)− η̂(ε−)) =
∫

ε+

ε−

σR(ε)−σKV (ε)
ΘKV (ε)

dε. (82)

On the other hand, according to relations (47), (51), (78) and (82) the total entropy production of a travel-
ing wave governed by a Kelvin-Voigt material in the absence of heat conduction is given by

Ptrav
KV =

∫
∞

−∞

µ Ṡ2

θ̂

(
ε̂
′)2dξ =−Ṡ

∫
ε+

ε−

σR(ε)−σKV (ε)
ΘKV (ε)

dε =−Ṡρ(ηeq(ε+,θ+)−ηeq(ε−,θ−))≥ 0. (83)

One derives the same conclusion like for the entropy production in a profile layer generated by the Maxwellian
rate-type model in the absence of heat conduction.
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5.2 Structuring mechanisms: Maxwellian viscosity coupled with heat conduction.

We are now interested to investigate the existence and uniqueness of the solutions of the non-linear au-
tonomous system (57). Following the method proposed by Gilbarg [15] we first analyze the system behavior
near its critical points. The linearization of (57) in a neighborhood of (ε±,θ±) leads to the system

d
dξ

(
ε̂

θ̂

)
= JMxw(ε±,θ±)

(
ε̂

θ̂

)
, (84)

where

JMxw(ε,θ) =−

 E
µ Ṡ(E−ρ Ṡ2)

∂R
∂ε

E
µ Ṡ(E−ρ Ṡ2)

∂R
∂θ

Ṡ
κ

∂HMxw
∂ε

Ṡ
κ

∂HMxw
∂θ

 . (85)

We show that

∂R
∂ε

(ε±,θ±) = ρ Ṡ2−
∂σeq

∂ε
, ∂R

∂θ
(ε±,θ±) =−∂σeq

∂θ
, (86)

∂HMxw

∂ε
(ε±,θ±) =−θ

±
(E−ρ Ṡ2)

∂σeq

∂θ(
E−

∂σeq

∂ε

) , ∂HMxw
∂θ

(ε±,θ±) = ρ
∂eeq
∂θ
−θ±

(
∂σeq

∂θ

)2

(
E−

∂σeq

∂ε

) . (87)

To prove relations (87) we have to use the properties of the free energy function ψ = ψMxw(ε,σ ,θ) of the
Maxwellian model from Section 4.1. Starting from (59), by using the properties (33)1 and (34)1 we get

∂HMxw

∂ε
(ε,θ) =−ρ(E−ρ Ṡ2)

(
∂ψMxw

∂σ
(ε,σR(ε),θ)−θ

∂ 2ψMxw

∂σ∂θ
(ε,σR(ε),θ)

)
. (88)

By using (38) and (39) we prove that

ρ
∂

2
ψMxw

∂σ∂θ
(ε,σ ,θ) =−

∂σeq

∂θ
(ε̃,θ)

(
E−

∂σeq

∂ε
(ε̃,θ)

)−1

, (89)

where ε̃ = ε̃(ε,σ ,θ) = h−1(σ−Eε,θ) is solution of the equation (37). Moreover, since σ± = σeq(ε±,θ±) =
σR(ε±) we get that ε̃(ε±,σ±,θ±) = ε±. Relation (87)1 is then obtained by using (88), (89) and (33)2. Relation
(87)2 is obtained directly from (44).

Let us note that if we consider the non-linear autonomous system describing the traveling wave solutions
for the Kelvin-Voigt model (60) we obtain the linearized system by using the function HKV (ε,θ) instead
HMxw(ε,θ) in (85). By a direct calculation, or by making E −→ ∞ in (85)-(87), we obtain

d
dξ

(
ε̂

θ̂

)
=

− 1
µ Ṡ
(
ρ Ṡ2− ∂σeq

∂ε
(ε±,θ±)

) 1
µ Ṡ

∂σeq
∂θ

(ε±,θ±)

Ṡ
κ θ±

∂σeq
∂θ

(ε±,θ±) − Ṡ
κ ρ

∂eeq
∂θ

(ε±,θ±)

( ε̂

θ̂

)
. (90)

The characteristic equation of the linearized system (84) at the critical points (ε±,θ±) is

r2 +r
{E
(

ρ Ṡ2− ∂σeq
∂ε

)
µ Ṡ(E−ρ Ṡ2)

+
Ṡ
κ

(
ρ

∂eeq

∂θ
−

θ
±
(

∂σeq

∂θ

)2

(
E−

∂σeq

∂ε

))}+
E
(

ρ Ṡ2− ∂σeq
∂ε

)
κµ(E−ρ Ṡ2)

{
ρ

∂eeq

∂θ
−

θ±
(

∂σeq
∂θ

)2

(
ρ Ṡ2− ∂σeq

∂ε

)}= 0.

(91)
The discriminant of this equation

∆(ε±,θ±) =
{E
(

ρ Ṡ2− ∂σeq
∂ε

)
µ Ṡ(E−ρ Ṡ2)

− Ṡ
κ

(
ρ

∂eeq

∂θ
−

θ
±
(

∂σeq

∂θ

)2

(
E−

∂σeq

∂ε

) )}2
+

4Eθ±
(

∂σeq
∂θ

)2

µκ

(
E− ∂σeq

∂ε

) , (92)
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is positive and then both eigenvalues r1,2(ε±,θ±) are real. Let us note that their product and their sum is

r1r2 =
ρ

2E
µκ(E−ρ Ṡ2)

∂eeq

∂θ

(
Ṡ2−λ

2), (93)

r1 + r2 =−1
Ṡ

[
ρE(Ṡ2−λ

2)
µ(E−ρ Ṡ2)

+
Eθ
±
(

∂σeq

∂θ

)2

µ(E−ρ Ṡ2)ρ
∂eeq

∂θ

+
Ṡ2

κ
ρ

∂eeq

∂θ

(
E−ρλ

2)(
E−

∂σeq

∂ε

)] (94)

where λ 2(ε±,θ±) ≡ 1
ρ

∂σeq
∂ε

+ θ
( ∂σeq

∂θ

)2
/
(
ρ2 ∂eeq

∂θ

)
, represents according to (19) the square of non-zero char-

acteristic directions of the adiabatic thermoelastic system at the critical points. Let us note that the sign of the
product of the eigenvalues is positive or negative according to whether the speed of the propagating disconti-
nuity Ṡ is larger or smaller than the adiabatic sound speed at the critical point.

If r1r2 < 0, i.e Ṡ2 < λ 2(ε,θ), (subsonic case) the eigenvalues have opposite signs and the critical point is
a saddle point.

If r1r2 > 0, i.e Ṡ2 > λ 2(ε,θ), (supersonic case) the eigenvalues have the same sign. According to (32),
(45) and (56) we have E >

∂σeq
∂ε

, E > ρλ 2(ε,θ) and E > ρ Ṡ2, respectively. Therefore, the sign of r1 + r2 is
equal to the sign of−Ṡ. Thus, if Ṡ > 0 then both eigenvalues are negative and the critical point is an attractive
node while if Ṡ < 0 both eigenvalues are positive and the critical point is a repulsive node.

If r1 = 0, i.e. Ṡ2 = λ 2(ε,θ) then the sign of r2 is equal to the sign of −Ṡ. In this case, in the neighborhood
of the critical point the orbits are straight lines parallel with the eigenvector corresponding to the non-zero
eigenvalue. The orientation being away (r2 > 0), or towards (r2 < 0) an axis of stationary points parallel with
the eigenvector corresponding to the null eigenvalue.

5.2.1 Existence, uniqueness and structure of viscous, heat conducting profile layers.

We assume that the thermoelastic constitutive equation σ = σeq(ε,θ) satisfies the assumptions H1-H4 corre-
sponding to a phase transforming material, the smoothness assumption S1, and the dynamic Young’s modulus
E satisfies conditions (32) and (45).

Let us consider Ṡ > 0 and (ε+,θ+) a front state of a wave discontinuity for the adiabatic thermoelastic
system and (ε−,θ−) a Hugoniot back state. Our goal is to determine the constitutive restrictions under which
the chord criterion (64)-(65) with respect to the Hugoniot locus σ = σH(ε;ε+,θ+) is a necessary and suffi-
cient condition for the existence of a unique profile layer structured by the Maxwellian rate-type constitutive
equation and by the Fourier law. In fact, we first investigate when the chord criterion with respect to the stress-
strain curve σ = σMxw(ε;ε+,θ+,ε−), given by (68), ensures the existence and uniqueness of a viscous, heat
conducting profile layer for any given coefficients µ > 0 and κ > 0, and then we apply Lemma 1 according
to which this criterion is equivalent with with the chord criterion with respect to the Hugoniot locus.

The study of the behavior of the solutions of the system (57) is based on the idea of Gilbarg [15] and used
later by Pego [26] to exploit the topological properties of the curves HMxw(ε,θ) = 0 and R(ε,θ) = 0 along
which θ̂ ′(ξ ) and ε̂ ′(ξ ) vanishes. We consider for instance the compressive case when ε−< ε+. We distinguish
several situations depending on the sign of ∂σeq

∂θ
(ε±,θ±), i.e. on the sign of the Grüneisen coefficient (16) at

the critical points. The expansive case when ε+ < ε− can be investigated in a similar way.

C. The compressive case ( ε− < ε+ ).
In this case the chord criterion with respect to the curve σ = σMxw(ε;ε+,θ+,ε−) requires that

s(ε)def= σR(ε)−σMxw(ε;ε
+,θ+,ε−) < 0, for any ε ∈ (ε−,ε+). (95)

We first establish some properties of the functions (67) and (68). By using the theorem of implicit functions
and the thermodynamic properties established in Section 4.1 for the Maxwellian model we can show that

dΘMxw(ε)
dε

=
(E−ρ Ṡ2)

CMxw

(
∂ψMxw

∂σ
−ΘMxw(ε)

∂ 2ψMxw

∂θ∂σ

)
(ε,σR(ε),ΘMxw(ε)). (96)
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Let us remind that θ = ΘMxw(ε) is the trajectory in the ε −θ plane of the viscous, heat non-conducting
profile layer described in Section 5.1.2. It is interesting to observe that relation (96) can be directly obtained
by writing the energy identity (48) for the traveling wave solution (ε̂(ξ ), θ̂(ξ ) = ΘMxw(ε̂(ξ ))) given by (67)
and (69). The first term in the parenthesis is related with the contribution of the intrinsic dissipation, while the
second one is related with the contribution of the latent heat, to the heating in a viscous, heat non-conducting
profile layer. Therefore the sign of the above derivative reflects a balance between the intrinsic dissipation and
the latent heat inside the viscous heat non-conducting profile layer.

By using the thermodynamic properties (41) and (89) we can write (96) as

dΘMxw(ε)
dε

=
(E−ρ Ṡ2)

ρCMxw(ε,σR(ε),ΘMxw(ε))

(
σR(ε)−σeq(ε̃,ΘMxw(ε))

E
+ΘMxw(ε)

∂σeq
∂θ

(ε̃,ΘMxw(ε))

E−
∂σeq

∂ε
(ε̃,ΘMxw(ε))

)
(97)

where ε̃ = ε̃(ε) is the unique solution of the equation (37) for σ = σR(ε) and θ = ΘMxw(ε), i.e. it satisfies

σR(ε)−Eε = σeq(ε̃,ΘMxw(ε))−E ε̃. (98)

Finally, one shows that at the critical points we have

dΘMxw(ε±)
dε

=
(E−ρ Ṡ2)θ±

∂σeq

∂θ
(ε±,θ±)

ρCMxw(ε±,σ±,θ±)
(

E−
∂σeq

∂ε
(ε±,θ±)

) . (99)

Since dσMxw(ε)
dε

= ∂σeq
∂ε

(ε,ΘMxw(ε))+ ∂σeq
∂θ

(ε,ΘMxw(ε)) dΘMxw(ε)
dε

, by using (99) and (44) we get that

s′(ε±) =
Ceq(ε±,θ±)

CMxw(ε±,σ±,θ±)
ρ
(
Ṡ2−λ

2(ε±,θ±)
)
. (100)

Because s(ε±) = 0, a direct consequence of the chord condition (95) is s′(ε−)≤ 0 and s′(ε+)≥ 0. By using
(100) one obtains that Ṡ2−λ 2(ε−,θ−)≤ 0 and Ṡ2−λ 2(ε+,θ+)≥ 0. If the inequalities are strict, from (93)-
(94), one gets that (ε−,θ−) is a saddle node (subsonic critical point), while (ε+,θ+) is an attractive node
(supersonic critical point). Therefore, the chord criterion is consistent with the shock inequalities of Lax [20],
which for a right-facing wave discontinuity read 0 < λ (ε+,θ+) < Ṡ < λ (ε−,θ−). A degenerate case, is when
Ṡ = λ (ε±,θ±) which is considered separately.

+

_
a) c)b)

+
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σ
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Fig. 3 Typical compressive jump discontinuities from state (ε+,θ+) to (ε−,θ−) satisfying the chord criterion with respect to
the Hugoniot curve σ = σH(ε;ε+,θ+). Phase transformations: a) Case C1. A →M−; b) Case C2. M + → A ; c) Case C3.
M +→M−.

Case C1. ∂σeq
∂θ

(ε±,θ±) < 0, i.e. positive Grüneisen coefficients (16) at the critical points.

That means (ε±,θ±) belong to the region where ∂σeq
∂θ

< 0, that is where ε < εt(θ) (Fig. 2). According
to assumption H3-H4 the front state and the Hugoniot state (ε±,θ±) lie in the austenitic phase A or in the
martensitic variant M−. A typical compressive jump discontinuity from A to M− is illustrated in Fig. 3a.
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Since ∂R(ε,θ)
∂θ

=− ∂σeq(ε,θ)
∂θ

> 0 for ε < εt(θ), it follows that R(ε,θ) = 0 is locally uniquely representable
as a single valued function of ε . We assume there exists a function denoted θ = ΘR(ε;ε+,θ+,ε−) for ε

belonging to an interval which contains ε± such that R(ε,ΘR(ε)) = 0 and θ±=ΘR(ε±;ε+,θ+,ε−). Its image
through the function σ = σeq(ε,θ) in the ε −σ plane is just the Rayleigh line, i.e. σR(ε) = σeq(ε,ΘR(ε)).
Moreover, we have

dΘR(ε)
dε

=
(

ρ Ṡ2−
∂σeq

∂ε
(ε,ΘR(ε))

)(
∂σeq

∂θ
(ε,ΘR(ε))

)−1
. (101)

Let us introduce the function t(ε)def=ΘR(ε)−ΘMxw(ε) for ε ∈ (ε−,ε+). We note that t(ε±) = 0, and these
are the only points where function t = t(ε) vanishes, or equivalently, (ε±,θ±) are the only critical points
of (57) in the interval (ε−,ε+). Indeed, if we suppose there exists an ε∗ ∈ (ε−,ε+) such that ΘR(ε∗) =
ΘMxw(ε∗) we get σR(ε∗) = σeq(ε∗,ΘR(ε∗)) = σeq(ε∗,ΘMxw(ε∗)) = σMxw(ε∗) which is in contradiction with
our assumption that the chord condition (95) is satisfied. By using (97) and (101) we get that

t ′(ε±) =
dΘR(ε±)

dε
− dΘMxw(ε±)

dε
= s′(ε±)

(
ρ

∂σeq(ε±,θ±

∂θ

)−1
. (102)

Since the chord criterion (95) requires s′(ε−) ≤ 0 and s′(ε+) ≥ 0 one gets that t ′(ε−) ≥ 0 and t ′(ε+) ≤ 0.
Thus, it follows that t(ε) = ΘR(ε)−ΘMxw(ε) > 0, for any ε ∈ (ε−,ε+) (Fig. 4).

Let us note that function θ = ΘMxw(ε) is a strictly decreasing function of ε ∈ (ε−,ε+), and consequently,
the Hugoniot back state temperature has to be larger than the front state temperature, i.e. θ−> θ+. Therefore,
the corresponding compressive discontinuity is of heating type. The result is in agreement with the fact that
the phase transformation A →M− is exothermic. This behavior is a consequence of the fact that both terms
in the parenthesis of the right part of relation (97) are negative. From physical point of view that means
both the intrinsic dissipation and the latent heat contribute to the increase of temperature in the viscous, heat
non-conducting profile layer.

To prove this assertion we have to note that ∂σeq
∂θ

(ε̃(ε),ΘMxw(ε)) < 0, and the chord condition (95) implies
that σR(ε)−σeq(ε̃(ε),ΘMxw(ε)) < 0, where ε̃(ε) is given by (98), for any ε ∈ (ε−,ε+). The last inequality fol-
lows from the identity

(
σR(ε)−σeq(ε̃,ΘMxw(ε))

)(
E− ∂σeq

∂ε
(ε∗,ΘMxw(ε))

)
=
(
σR(ε)−σeq(ε,ΘMxw(ε))

)
E,

where ε∗ lies between ε and ε̃(ε).
Concerning the function θ = ΘR(ε), we note that it can be monotone decreasing, but it can be non-

monotone, too. Indeed, the inequalities dΘR(ε+)
dε

< dΘMxw(ε+)
dε

< 0 and dΘR(ε−)
dε

> dΘMxw(ε−)
dε

, which follow from
relation (102), require only that θ = ΘR(ε) is a decreasing function of ε in the neighborhood of ε+ (Fig. 4).

The existence of a connecting orbit follows now from topological considerations similar with those used
by Gilbarg [15]. The closed curve formed by θ = ΘMxw(ε) and θ = ΘR(ε), for ε ∈ (ε−,ε+), bounds a simply
connected region P of the ε−θ plane. Since HMxw > 0 on the curve R = 0 and R < 0 on the curve HMxw = 0,
for ε ∈ (ε−,ε+), one concludes that everywhere in P, HMxw > 0 and R < 0. Let us note that on the boundaries
HMxw = 0 and R = 0 all vector fields of the flow induced by (57) point toward the region P, horizontally and
vertically, respectively.

Let us consider first the case of strict inequalities, i.e. Ṡ2 > λ 2(ε+,θ+) and Ṡ2 < λ 2(ε−,θ−). Since dθ

dε
=

µ(E−ρ Ṡ2)Ṡ2

κE
HMxw

R , all integral curves of (57) must be monotone decreasing in P, and because they cannot leave
P and there is no critical point in this region they must tend to the attractive point (ε+,θ+) (Fig. 4). Taking
into account that (ε−,θ−) is a saddle point one obtains that a trajectory connecting (ε+,θ+) and (ε−,θ−)
exists and lies inside the region P. Moreover, the temperature and the deformation vary monotonously across
this viscous, thermally conducting profile layer.

Let us note that when Ṡ2 = λ 2(ε±,θ±), i.e. one eigenvalue (91) is zero and the another one is negative at
a critical point, the two curves HMxw = 0 and R = 0 are tangent at (ε±,θ±). Moreover, they are tangent with
the integral curve of (57) and with the isentrope (15) passing through this point, i.e. dθMxw(ε±)

dε
= dθR(ε±)

dε
=

θ+
∂σeq
∂θ

ρCeq
(ε±,θ±) < 0. The direction of this common tangent coincides with the direction of the eigenvec-

tor corresponding to the eigenvalue zero. Similar topological arguments prove the existence of a trajectory
connecting (ε+,θ+) and (ε−,θ−).

Conversely, let us prove that the chord criterion is also a necessary condition for the existence of a profile
layer. We suppose by absurd that a profile layer connecting (ε±,θ±) exists, but the chord criterion is vio-
lated. Let us assume there exists at least one point ε∗ ∈ (ε−,ε+) such that σR(ε∗) = σMxw(ε∗;ε+,θ+,ε−).
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Fig. 4 Case C1 - phase portrait of (57) for A →M− phase transformation illustrated in Fig. 3a.

According to relation

s(ε) = σR(ε)−σMxw(ε) = σeq(ε,ΘR(ε))−σeq(ε,ΘMxw(ε)) =−
∂σeq(ε, θ̄(ε))

∂θ
(ΘMxw(ε)−ΘR(ε)), (103)

where θ̄(ε) lies between ΘMxw(ε) and ΘR(ε), it follows that ΘMxw(ε∗) = ΘR(ε∗)≡ θ ∗, i.e. R(ε∗,θ ∗) = 0 and
HMxw(ε∗,θ ∗;ε+,θ+,ε−) = 0. Therefore, (ε∗,θ ∗) is a critical point of the system (57). On the other side, by
using relation (62) we obtain H(ε∗,θ ∗;ε+,θ+) = 0, that is (ε∗,θ ∗) is also a Hugoniot state. Therefore, the
curves θ = ΘMxw(ε;ε+,θ+,ε−) and θ = ΘR(ε;ε+,θ+,ε−) pass through the critical points between ε− and
ε+. We also note that the Rayleigh line provides a natural ordering for these points. Considering the position
of σ = σMxw(ε;ε+,θ+,ε−) with respect to the Rayleigh line one proves as before that these critical points
alternate between being saddle points and attractive points. Because HMxw > 0 above θ = ΘMxw(ε) and R < 0
below θ = ΘR(ε) one gets from a phase portrait diagram of type in Fig. 4 that (ε+,θ+) can be connected by
a trajectory only with the first critical point with smaller strain than ε+ and thus it is impossible to connect
(ε+,θ+) by a trajectory with (ε−,θ−). Contradiction.

The uniqueness of the profile layer is based on the fact that a trajectory connecting (ε+,θ+) and (ε−,θ−)
can not lie outside P (see also Pego [26]).

Thus, for any µ > 0 and κ > 0 there exists a unique profile layer (θ̂(ξ ), ε̂(ξ ); µ,κ) joining (ε+,θ+)
and (ε−,θ−). The limit behavior of such profile layer as µ → 0 and κ → 0 can be studied in a similar way
as was done by Gilbarg [15] for a viscous, thermally conducting fluid. One proves the existence of the it-
erated limits and their equality with the double limit. The limit is just a step wave discontinuity connecting
(ε+,θ+) and (ε−,θ−). Moreover, Gilbarg [15] has put into evidence a basic difference in the effect of vis-
cosity and of heat conduction on the structure of the profile layers which holds for the Maxwellian approach,
too. Thus, if we consider a fixed viscosity µ = µ̄ and κ→ 0, the trajectories in ε−θ plane of all profile layers
(θ̂(ξ ), ε̂(ξ ); µ̄,κ) are increasingly close to the decreasing curve θ = ΘMxw(ε) and approach the solutions of
the reduced system (66). This traveling wave solution is smooth with respect to ξ and describe a viscous, heat
non-conducting profile layer.

If θ = ΘR(ε) is monotone decreasing and if we consider a fixed heat conductivity κ = κ̄ and µ → 0,
all shock layers curves (θ̂(ξ ), ε̂(ξ ); µ, κ̄) are increasingly close to the curve θ = ΘR(ε) and approaches the
solutions of the following reduced system

0 = R(ε̂, θ̂),
θ̂ ′ =− Ṡ

κ
HMxw(ε̂, θ̂), limξ→±∞ θ̂(ξ ) = θ±,

(104)

These profile layers describe non-viscous, heat conducting profile layers.
An important difference appears when θ = ΘR(ε) is non monotone. Since all integral curves of the system

(57) are strictly decreasing in P one shows that as µ → 0 the trajectories in ε −θ plane of the profile layers
(θ̂(ξ ), ε̂(ξ ); µ, κ̄) are increasingly close to the monotone decreasing curve θ = Θ̄R(ε) defined by

θ = Θ̄R(ε) = min
ζ∈[ε−,ε]

ΘR(ζ ), for ε ∈ [ε−,ε+]. (105)
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This function is represented with dotted line on those parts which do not coincide with θ = ΘR(ε) in Fig.
4. If θ = ΘR(ε) has a finite number of minima then θ = Θ̄R(ε) has at most a finite number of intervals
on which θ is constant, which correspond to what are called isothermal jumps in strain inside the profile
layer. Therefore, in this case, as µ → 0 the profile layers (θ̂(ξ ), ε̂(ξ ); µ, κ̄) approaches a pair of functions
denoted by (θ̂(ξ ), ε̂(ξ ); µ = 0, κ̄) with the property that ε̂(ξ ; µ = 0, κ̄) is discontinuous and θ̂(ξ ; µ = 0, κ̄)
is continuous and piecewise smooth. Thus, the notion of traveling wave solution must be enlarged in order to
admit such discontinuous solutions for the reduced system (104).

Case C2. ∂σeq
∂θ

(ε±,θ±) > 0, i.e. negative Grüneisen coefficients at the critical points.

That means (ε±,θ±) belong to the region where ∂σeq
∂θ

> 0, that is where ε > εt(θ) (Fig. 2). According
to assumptions H3-H4 the front state and the Hugoniot state (ε±,θ±) lie in the austenitic phase A or in the
martensitic variant M +. A typical compressive jump discontinuity from M + to A is illustrated in Fig. 3b.

Since ∂R(ε,θ)
∂θ

= − ∂σeq(ε,θ)
∂θ

< 0 for ε > εt(θ), it follows that R(ε,θ) = 0, given by (58), is representable
as a single valued function of ε . We suppose there exists a function θ = ΘR(ε;ε+,θ+,θ−), which satisfies
R(ε,ΘR(ε)) = 0 and consequently, σR(ε) = σeq(ε,ΘR(ε))), for ε belonging to an interval which contains ε−

and ε+. Moreover, relations (97) and (101) are still valid.
By defining the function t(ε)def=ΘR(ε)−ΘMxw(ε), for ε ∈ (ε−,ε+), taking into account that the Grüneisen

coefficient is negative at the critical points, and using the same reasoning based on the chord condition (95) as
in case C1 we obtain from (102) that t ′(ε−)≤ 0 and t ′(ε+)≥ 0, which involves that t(ε) =ΘR(ε)−ΘMxw(ε) <
0, for any ε ∈ (ε−,ε+).

From (99) one gets that dΘMxw(ε±)
dε

≥ 0. Therefore, θ = ΘMxw(ε) is monotone increasing in the neigh-
borhood of ε±, but we cannot say anything, without additional constitutive assumptions, neither about its
monotonicity, nor about the order relation between θ− and θ+. Indeed, in the present compressive case, the
first term in the right part of relation (97) is negative, that means the intrinsic dissipation always contributes
to the increase of the temperature inside the viscous, heat non-conducting profile layer, while the second term
is positive, that is, the latent heat contributes to the decrease of the temperature inside this layer. Therefore,
θ = ΘMxw(ε) is monotone increasing on those intervals where the cooling due to latent heat dominates the
heating due to intrinsic dissipation and it is monotone decreasing when the opposite case happens.

The following representative cases will be analyzed:
a) θ− < θ+ and θ = ΘMxw(ε) monotone increasing (Fig. 5a).
b) θ− < ΘMxw(ε) < θ+, but θ = ΘMxw(ε) is non-monotone (Fig. 5b).
c) θ− > θ+ (Figs. 6).
We consider as natural from physical point of view for phase transforming materials the case a), where

the latent heat effect is more important than the dissipation effect along the traveling wave. That is way we
discuss in the following some additional constitutive restrictions which are sufficient to ensure such behavior.

Example 1. Let us consider for simplicity the Kelvin-Voigt model (30). By making E→ ∞ in (97) we get
that function θ = ΘKV (ε;ε+,θ+,ε−) satisfies relation

dΘKV (ε)
dε

=
1

ρCeq(ε,ΘKV (ε))

(
σR(ε)−σKV (ε)+ΘKV (ε)

∂σeq

∂θ
(ε,ΘKV (ε))

)
. (106)

Suppose that

ρ
∣∣∂Ceq(ε,θ)

∂ε

∣∣� ∣∣∣∂σeq(ε,θ)
∂θ

∣∣∣, (107)

that is, the variation of the specific heat Ceq(ε,θ) with respect to ε is negligible regarding the variation of
σeq(ε,θ) with respect to the θ . The simplest case is when the specific heat does not depend on ε .

Taking into account that ∂ 2σeq(ε,θ)
∂θ 2 = −ρ

θ

∂Ceq(ε,θ)
∂ε

, condition (107) becomes θ

∣∣∣ ∂ 2σeq(ε,θ)
∂θ 2

∣∣∣� ∣∣∣ ∂σeq(ε,θ)
∂θ

∣∣∣.
By using the mean value theorem we can show that for any ε ∈ (ε−,ε+)

σR(ε)−σKV (ε)+ΘKV (ε)
∂σeq

∂θ
(ε,ΘKV (ε)) = ΘR(ε)

∂σeq(ε,ΘKV (ε))
∂θ

+
1
2
(ΘR(ε)−ΘKV (ε))2 ∂ 2σeq(ε, θ̄)

∂θ 2 ,

where θ̄ lies between ΘR(ε) and ΘKV (ε). Thus, it follows that dΘKV (ε)
dε

≈ ΘR(ε)
ρCeq(ε,ΘKV (ε))

∂σeq(ε,ΘKV (ε))
∂θ

> 0.
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Consequently, θ = ΘKV (ε) is a strictly increasing function of ε ∈ (ε−,ε+) and the Hugoniot back state
temperature has to be lower than the front state temperature, i.e. θ− < θ+. Therefore, the corresponding
compressive wave discontinuity is of cooling type. The result is in agreement with the fact that the reverse
phase transformation M +→A is endothermic.

Remark. Let us note that the same condition (107) can be also used for the complementary expansive case
(ε+ < ε−) with positive Grüneisen coefficients at the critical points, i.e. ∂σeq

∂θ
(ε±,θ±) < 0.

Indeed, in this case the chord condition requires that σR(ε)−σKV (ε) > 0 for any ε ∈ (ε+,ε−). One gets
from (106) and (107) that θ = ΘKV (ε) is a strictly decreasing function of ε and thus, the Hugoniot back
state temperature has to be lower than the front state temperature, i.e. θ+ > θ−. Therefore, the corresponding
expansive wave discontinuity (rarefaction shock) is of cooling type. Such behavior is natural and in agreement
with the fact that the reverse phase transformation M−→A is also endothermic. Physically that means the
heating due to the intrinsic dissipation is dominated by the cooling due to latent heat.

For the Maxwellian rate-type model (29) if we suppose besides condition (107) that∣∣∣ε ∂ 2σeq(ε,θ)
∂ε∂θ

∣∣∣� ∣∣∣∂σeq(ε,θ)
∂θ

∣∣∣ and
∣∣∣ε ∂ 2σeq(ε,θ)

∂ε2

∣∣∣� E, (108)

we can show, by using (96), that dΘMxw(ε)
dε

≈ (E−ρ Ṡ2)ΘR(ε)

ρCMxw(ε,σR(ε),ΘMxw(ε))
(

E− ∂σeq
∂ε

(ε,ΘMxw(ε))
) ∂σeq(ε,ΘMxw(ε))

∂θ
> 0.

Thus θ = ΘMxw(ε) is in case C2 a strictly increasing function of ε and consequently θ− < θ+, which
corresponds to a compressive shock discontinuity of cooling type.

Let us note that the explicit piecewise linear thermoelastic model considered in Part II [10] to describe
phase transformation in a SMA alloy fulfills conditions (107) and (108).

Example 2. Another type of constitutive restriction has been considered by Pego [26] in order to prove
the existence and uniqueness of shock layers in gas dynamics with non-convex equation of state and positive
Grüneisen coefficient. In this case the shock layers are solution of the Navier-Stokes equation with viscosity
and heat conduction for one-dimensional flows. Let us note that for fluids one considers only positive pressure.
That corresponds in our notations to σ =−p < 0. Pego [26] proposed the following condition

ρ
∂eeq(ε,θ)

∂ε
= σeq(ε,θ)−θ

∂σeq(ε,θ)
∂θ

≥ 0. (109)

Using (109) in relation (106) one obtains ρCeq(ε,θ) dΘKV (ε)
dε

= σR(ε)− ∂eeq(ε,ΘKV (ε))
∂ε

< 0.
Thus, for the expansive case considered by Pego, i.e. for ε+ < ε−, one obtains that θ = ΘKV (ε) is strictly

decreasing and the rarefaction shock is of cooling type, i.e θ− < θ+.
The inconvenience of this condition appears for solids, in the compressive case, when σ = σR(ε) is in gen-

eral positive and (109) does not more lead to the monotony of θ = ΘKV (ε). Thus, for our phase transforming
material, in the compressive case C2, Pego’s condition does not involve that θ =ΘKV (ε) is an increasing func-
tion of ε , i.e. the compressive discontinuity is of cooling type as it should be for a shock induced M +→A
phase transformation.

We can show now that for the phase diagrams illustrated in Figs. 5 and Fig. 6a), which correspond to cases
a), b) and c), respectively, the chord condition (95) is a necessary and sufficient requirement for the existence
and uniqueness of a viscous, heat conducting profile layer for any given coefficients µ > 0 and κ > 0. The
proof, given below, is based on the properties of the vector field of the flow induced by (57) and topological
considerations related to the corresponding figures.

On the other side, for the phase diagram illustrated by Fig. 6b, where the chord criterion is satisfied, but
the curves θ = ΘMxw(ε;ε+θ+,θ−) and θ = ΘR(ε;ε+θ+,θ−) meet again at a critical point (ε0,θ0), with the
properties that ε0 > ε+ and θ0 < θ−, a trajectory connecting (ε+,θ+) and (ε−,θ−) no longer exists if the
heat conduction dominates the viscosity. This phase diagram corresponds to the example given by Pego [26])
concerning the nonexistence of a shock layer in gas dynamics with a nonconvex equation of state.

Let us consider, for example, case b) represented by Fig. 5b). We denote by P the simply connected region
bounded by θ =ΘMxw(ε) and θ =ΘR(ε) for ε ∈ (ε−,ε+). Since HMxw < 0 and R < 0 in P any integral curves
of (57) is monotone increasing inside P. On the boundary R = 0 all vector fields of the flow induced by (57)
point vertically toward the region P while on the boundary HMxw = 0 all vector fields point horizontally right.
Therefore, on the ascending branches of the curve θ = ΘMxw(ε) the vector fields point toward the region P
while on the descending branches of the curve θ = ΘMxw(ε) they point horizontally outwards the region P.
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Fig. 5 Case C2 - phase portrait of (57) when: a) θ− < θ+ and θ = ΘMxw(ε) monotone increasing; b) θ− < ΘMxw(ε) < θ+, but
θ = ΘMxw(ε) is non-monotone.
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Fig. 6 Case C2 - possible phase portraits of (57) when θ− > θ+ and the chord criterion is satisfied: a) profile layers exists for
any µ > 0 and κ > 0 ; b) profile layers does not exists if heat conduction dominates the viscosity.

Let us note that if ε ∈ (ε−,ε+) and θ > ΘMxw(θ) we have HMxw > 0 and R < 0. Consequently, any integral
curve which leaves the domain P through the descending branches of the curve θ = ΘMxw(ε) is monotone
descending and when it meets again an ascending branch of this curve it is directed inside the region P.

Let us introduce the continuous and monotonic function

θ = Θ̄Mxw(ε) = max
ζ∈[ε−,ε]

ΘMxw(ζ ), for ε ∈ [ε−,ε+]. (110)

This is the minimum among all monotone increasing curves bounded from below by the curve θ = ΘMxw(ε).
It is composed by ascending branches of θ = ΘMxw(θ) and by the horizontal lines marked with dotted lines in
Fig. 5b. Let us denote by P̄ the simply connected region bounded by θ = Θ̄Mxw(ε) and θ = ΘR(ε). According
to the above said, any integral curve of (57) cannot leave P̄ and since there is no critical point in region P̄ they
must tend to the attractive point (θ+,ε+). Because (θ−,ε−) is a saddle point one obtains that a trajectory
connecting (θ+,ε+) and (θ−,ε−) exists for any µ > 0 and κ > 0 and lies inside P̄.

The reverse implication can be proved in the same way as in case C1 using relation (103). The uniqueness
of the connecting orbit is based on the fact that a trajectory connecting (ε±,θ±) cannot lie outside P̄.

Let us note that, for fixed viscosity µ = µ̄ and sufficiently small κ , the connecting orbit (θ̂(ξ ), ε̂(ξ ); µ̄,κ)
is close to the non-monotone curve θ = ΘMxw(ε). In this case the smooth profile layer has the property that
ε = ε̂(ξ ) is strictly monotone, but θ = θ̂(ξ ) may become non-monotone as it happens in Fig. 5b. On the
other side, when the heat conduction dominates the viscosity, the connecting orbit has to be close to the curve
θ = ΘR(ε) if this is monotone increasing or to the curve θ = Θ̄R(ε) defined by relation

θ = Θ̄R(ε) = max
ζ∈[ε−,ε]

ΘR(ζ ), for ε ∈ [ε−,ε+], (111)
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if θ = ΘR(ε) is non-monotone. In this second case the limit trajectory (θ̂(ξ ), ε̂(ξ );0, κ̄) has the property
that ε̂(ξ ) is discontinuous (isothermal jumps inside the profile layer) and piecewise smooth, while θ̂(ξ ) is
continuous and piecewise smooth. Its trajectory in the ε − θ plane is given by the ascending branches of
θ = ΘR(ε) and by the isothermal strain jumps represented by dotted lines in Fig. 5b.

The case when the non-monotone function θ = ΘMxw(ε) overcomes θ+ can be treated as in case c)
considered in the following.

Let us first consider the phase diagram in Fig. 6a. Since θ− > θ+ and dΘMxw(ε±)
dε

≥ 0 it follows that

θ =ΘMxw(ε) must necessarily be non-monotone. According to relation (102) we have dΘR(ε+)
dε

> dΘMxw(ε+)
dε

> 0

and dΘR(ε−)
dε

< dΘMxw(ε−)
dε

. Consequently, θ = ΘR(ε) has to be also a non-monotone function for ε ∈ (ε−,ε+),
but always ending with a positive slope in the neighborhood of ε+. Since HMxw < 0 and R < 0 in the region
P bounded by θ = ΘMxw(ε) and θ = ΘR(ε), for ε ∈ (ε−,ε+) it follows that any integral curve of (57) is
monotone increasing inside P. On the boundary R = 0, for ε ∈ (ε−,ε+), all vector fields of the flow point
vertically toward the region P, while on the curve θ = ΘMxw(ε) the vector fields point horizontally toward
the region P on the ascending branches and point horizontally outwards P on the descending branches. In
the region above HMxw = 0 for ε ∈ (ε−,ε+) we have HMxw > 0 and R < 0, and consequently the integral
curves of (57) are monotone decreasing. Therefore, the integral curve starting from the saddle point (ε−,θ−)
towards P has to be monotone increasing until it meets the descending branch of the curve θ = ΘMxw(ε).
After traversing it, this integral curve is monotone descending. If the viscosity dominates the heat conduction
then this integral curve is close to the curve θ = ΘMxw(ε). It may happen that θ̂(ξ ) descends below θ+. Then,
this integral curve will meet the ascending branch of the curve θ = ΘMxw(ε) and will enter again inside P
reaching the attractive point (ε+,θ+) by an ascending curve.

A different situation appears when the viscosity is dominated by the heat conduction. In this case the strain
ε̂(ξ ) may overcome ε+. Thus, when µ → 0 the profile layers (θ̂(ξ ), ε̂(ξ ); µ, κ̄) will approach a pair of func-
tions denoted by (θ̂(ξ ), ε̂(ξ ); µ = 0, κ̄) with the property that ε̂(ξ ) is discontinuous while θ̂(ξ ) is continuous
and piecewise smooth. Let us denote by (ε∗,θ−) the unique point with the property that R(ε∗,θ−) = 0, where
ε∗ > ε+ (Fig. 6a). Due to the above topological considerations this discontinuous limit solution, which corre-
sponds to a non-viscous, heat conducting profile layer, is characterized by an isothermal jump from (ε−,θ−)
to (ε∗,θ−) and next is described by a pair of smooth functions (ε̂(ξ ), θ̂(ξ )) which are solution of the reduced
system (104) and connect the point (ε∗,θ−) with the attractive point (ε+,θ+).

The reverse implication that the chord criterion is also a necessary condition for the existence of a con-
necting orbit and its uniqueness can be also proved. We omit here the details.

Let us consider now the uncommon case c) illustrated in Fig. 6b. We denote again by (ε∗,θ−) the unique
point with the property that R(ε∗,θ−) = 0, where ε∗ > ε+. Unlike the diagram in Fig. 6a, we suppose that
between ε− and ε∗ there exists another critical point (ε0,θ0) for the system (57), i.e. a point where the
curves θ = ΘMxw(ε;ε+,θ+,ε−) and θ = ΘR(ε;ε+,θ+,ε−) intersect each other again. Let us note that this
point has to be a saddle point like (ε−,θ−). The chord condition is satisfied for ε ∈ (ε−,ε+) and if the
viscosity dominates heat conduction it is obvious that a shock layer connecting (ε±,θ±) exists. Instead, if the
viscous effects are negligible with respect to heat conduction effects, it is possible that there is no trajectory
connecting (ε−,θ−) with (ε+,θ+). Indeed, for fixed κ and µ → 0, the trajectory (θ̂(ξ ), ε̂(ξ ); µ, κ̄) leaving
the saddle point (ε−,θ−) is almost horizontal and must enter in the region between R(ε,θ ;ε+,θ+,ε−) = 0
and HMxw(ε,θ ;ε+,θ+,ε−) = 0, for ε > ε0. Since in this region HMxw > 0 and R > 0 the trajectory must be
monotone increasing (ε increasing, θ increasing). Consequently, the trajectory can not more reach the critical
point (ε+,θ+). Such an explicit example has been constructed by Pego [26] in order to exemplify that there
may be a wave discontinuity which satisfies the chord criterion, but for which a profile layer doest not exist if
the heat conduction dominates the viscosity.

Case C3. ∂σeq
∂θ

(ε+,θ+) > 0 and ∂σeq
∂θ

(ε−,θ−) < 0, i.e. different signs of the Grüneisen coefficient at the
critical points.

That means, (ε−,θ−) belongs to the region D− where ∂σeq
∂θ

< 0, that is, where ε < εt(θ) and (ε+,θ+)

belongs to the region D+ where ∂σeq
∂θ

> 0, that is, where ε > εt(θ) (Fig. 2). A typical compressive jump
discontinuity M +→M− is illustrated in Fig. 3c and Fig. 7.

We remind that the chord condition (95) requires that s′(ε−)≤ 0 and s′(ε+)≥ 0. Let us suppose first that
the inequalities are strict. According to (100), (ε−,θ−) is a saddle point and (ε+,θ+) is an attractive point.
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Fig. 8 Case C3 - temperature spike-layers and strain interphase transition layers corresponding to Fig. 7. a) viscous (µ > 0),
heat non-conducting layer (κ = 0); b) non-viscous (µ = 0), heat conducting (κ > 0).

By using relation (99) one gets that dΘMxw(ε−)
dε

< 0 and dΘMxw(ε+)
dε

> 0. Therefore, θ = ΘMxw(ε) must nec-
essarily be a non-monotone function. It is monotone decreasing in the neighborhood of ε− and monotone
increasing in the neighborhood of ε+. Moreover, by using the chord condition (95) and relation (97) one gets
that the branch of the curve θ = ΘMxw(ε) which lies in D− is monotone decreasing. This reflects the fact
that, on this part of the trajectory of a viscous, heat non-conducting profile layer, both the intrinsic dissipation
and the latent heat contribute to the heating process inside the layer. After the intersection with ε = εt(θ),
the function θ = ΘMxw(ε) reaches a minimum point at (ε∗,θ ∗) and we suppose, that later on, it is monotone
increasing as in Fig. 7. This situation always happens if the additional restrictions (107) and (108) are satis-
fied. On this part of the trajectory of the viscous, heat non-conducting profile layer, the intrinsic dissipation
contributes to the heating, while the latent heat contribute to the cooling process inside the layer. Let us note
that we can not say anything about the order relation between θ+ and θ−.

Since the Grüneisen coefficients have different signs at the critical points it follows that the implicit equa-
tion R(ε,θ) = 0, given by (58), is representable, and we assume that globally, by two functions of ε . One
branch θ = Θ

−
R (ε), passing through (ε−,θ−), lies in the domain D− and satisfies R(ε,Θ−R (ε)) = 0 and

σR(ε) = σeq(ε,Θ−R (ε)) on the corresponding interval of definition. The second branch θ = Θ
+
R (ε), passing

through (ε+,θ+), lies in the domain D+ and satisfies R(ε,Θ+
R (ε)) = 0 and σR(ε) = σeq(ε,Θ+

R (ε)) on the
corresponding interval of existence. Relations (101) and (102) are still valid for each branch and we get that
dΘ
−
R (ε−)
dε

> dΘMxw(ε−)
dε

and dΘ
+
R (ε+)
dε

> dΘMxw(ε+)
dε

> 0. Therefore, θ = Θ
+
R (ε) is an increasing function of ε in

the neighborhood of ε+ and moreover Θ
+
R (ε) < ΘMxw(ε) in D+ for ε < ε+. Indeed, this inequality can be

proved by taking into account that it is satisfied in a neighborhood of ε+ and from the fact that θ = Θ
+
R (ε)

(even non-monotone) cannot intersect θ = ΘMxw(ε) a second time without violating the chord condition (95).
In a similar way one shows that Θ

−
R (ε) > ΘMxw(ε) in D− for ε > ε−.

Let us note that θ = Θ
−
R (ε) is a non monotone function. Indeed, when (ε,ΘR(ε)) ∈I − ⊂ D− (see Fig.

2) we have ∂σeq(ε,ΘR(ε))
∂ε

< 0 and we get from (101) that θ = ΘR(ε) is monotone decreasing. When θ = ΘR(ε)
enters in the domain A ⊂ D−, it must end with a positive slope since otherwise would intersect the curve
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θ = ΘMxw(ε), which would contradict the chord criterion. Therefore, there exists a point (εr,θ r)∈D− where
the branch θ = Θ

−
R (ε) reaches its minimum and for simplicity we assume that its form is as shown in Fig. 7.

We suppose first that θ r < θ+. That means, for θ̄ ∈ (θ r,θ+) the isotherm σ = σeq(ε, θ̄) intersects the
Rayleigh line σ = σR(ε) in three points in the interval (ε−,ε+).

The existence of a profile layer, follows now from the following topological considerations. We denote by
P− the simply connected region bounded from above by θ = Θ

−
R (ε), from the right by ε = εt(θ) and from

below by θ = ΘMxw(ε). We denote by P+ the simply connected region bounded from below by θ = Θ
+
R (ε),

from the left by ε = εt(θ) and from above by θ = ΘMxw(ε). We denote by S the simply connected region
bounded from below by θ = ΘMxw(ε), from the left by ε = εt(θ) and from the right by θ = Θ

+
R (ε) for

ε > ε+. Let us note that HMxw > 0 on the curve θ = Θ
−
R (ε) for ε > ε− and HMxw < 0 on the curve θ = Θ

+
R (ε)

for ε < ε+. On the other side, R < 0 on the curve θ = ΘMxw(ε) for ε ∈ (ε−,ε+). Therefore, for ε ∈ (ε−,ε+),
on the curve HMxw = 0 all vector fields of the flow induced by (57) point horizontally to the right. On the
curve θ = Θ

−
R (ε) the vector fields point vertically down, while on the curve θ = Θ

+
R (ε) they point vertically

up (Fig. 7). The integral curves of (57), which satisfy dθ

dε
= µ(E−ρ Ṡ2)Ṡ2

κE
HMxw

R , have the following properties.
For given µ > 0 and κ > 0 they are monotone decreasing in P−∪S and are monotone increasing in P+. Since
(ε−,θ−) is a saddle point, the trajectory starting from this point toward region P− is monotone decreasing
and intersects the curve θ = ΘMxw(ε) at a point in the region D+. At this point the temperature reaches a
minimum value in the profile layer. After entering in the domain P+ the trajectory is monotone increasing and
since it cannot leave this domain it must end at the attractive point (ε+,θ+).

Therefore, when the Grüneisen coefficients have different signs at the critical points the temperature vari-
ation inside a viscous, heat conducting profile layer is non-monotone. Moreover, in the compressive case, the
temperature reaches lower values than the initial and Hugoniot temperature (Fig. 7), while in the expansive
case it will reach higher values. Thus, the profile layer of the temperature displays a narrow peak (or, spike)
pointing down as it is illustrated for instance in Fig. 8. At the point ξ0 where dθ̂

dξ
= 0 the heat flux q changes

the sign, that means the heat flux q changes the direction inside the profile layer. This behavior is in agreement
with the fact that, a continuous transformation from variant M + to variant M− passes through the phase A
and the transformation M +→A is endothermic (cooling for ξ > ξ0) while the transformation A →M− is
exothermic (heating for ξ < ξ0) (Fig. 8).

The limit behavior of the profile layers (θ̂(ξ ), ε̂(ξ ); µ,κ) as µ → 0 and/or κ → 0 can be studied in the
same way as in the previous compressive cases.One observes that when the viscosity largely dominates the
heat conduction, the trajectory of the connecting integral curve is closer to the curve HMxw = 0. Moreover, for
fixed viscosity µ = µ̄ and κ = 0 the connecting orbit (θ̂(ξ ), ε̂(ξ ); µ̄,0) is solution of the reduced system (66)
and matches with the non-monotone curve θ = ΘMxw(ε). The corresponding viscous, heat non-conducting
profile layer is illustrated in Fig. 8a. It is worth to remark that when µ → 0 the limit of the strain profile
ε̂(ξ ; µ,0) is a discontinuous function whose value is ε− for ξ < ξ0 and ε+ for ξ > ξ0. On the other side,
due to the spike-layer form of the temperature profiles, the limit of θ̂(ξ ; µ,0), for µ → 0, is a discontinuous
function whose value is θ− for ξ < ξ0, θ ∗ at ξ = ξ0 and θ+ for ξ > ξ0, where θ ∗ represents the minimum
value of the function θ = ΘMxw(ε), for ε ∈ (ε−,ε+). For both strain and temperature profiles the convergence
is uniform in ξ in any closed interval not containing the discontinuity point ξ0. We have to remark that the
adiabatic thermoelastic temperature structure with sharp interface does not inherit the temperature structure of
the augmented theory. Indeed, it should be noted that the value θ ∗ does not play any role in solving a Riemann
problem involving a compressive shock induced M−→M + phase transformation in the framework of the
adiabatic thermoelastic wave theory. In this approach only the lateral limits across the discontinuities are
relevant. On the other side, for an adiabatic rate-type approach of the same problem, with small viscosity
µ , the minimum value θ ∗ and the corresponding spike-layer temperature structure may become extremely
important, specially when one describes wave interaction phenomena. The prediction of the augmented theory
of larger values of temperature than the initial and final one inside a profile layer could be also important in
terms of experimental.

Let us consider the opposite case when the heat conduction largely dominates the viscosity. In a similar
way as in the previous cases one shows that for fixed κ = κ̄ , as µ → 0, the trajectories (θ̂(ξ ), ε̂(ξ ); µ, κ̄) of
the integral curves of (57) in the region D− tend to be closer to a monotone decreasing curve θ = Θ̄

−
R (ε) of

the type (105), while the trajectories of the integral curves in the region D+ tend to be closer to a monotone
increasing curve θ = Θ̄

+
R (ε) of the type (111). We also note that the intersection point between the trajectory
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of the profile layer (θ̂(ξ ), ε̂(ξ ); µ, κ̄) with the curve θ = ΘMxw(ε) moves up as µ → 0. The corresponding
limit value of the temperature is θ r, which is the minimum value of the function θ = Θ

−
R (ε).

Since the sign of the slope of these trajectories is negative in P− ∪ S and positive in P+ one gets that
the limit trajectory (θ̂(ξ ), ε̂(ξ );0, κ̄) in the ε − θ plane, for the phase portrait in Fig. 7, is composed by: a
horizontal line starting at (ε−,θ−) and ending at the intersection point with the curve θ = Θ

−
R (ε) (dotted

line in Fig. 7), then by the curve θ = Θ
−
R (ε) until its minimum point having the temperature θ r, next by a

horizontal line which ends at the intersection point with the curve θ =Θ
+
R (ε) (dotted line in Fig. 7) and finally

by the curve θ = Θ
+
R (ε) until the point (ε+,θ+). Thus, for this non-viscous, heat conducting profile layer,

illustrated in Fig. 8b, the temperature is continuous, but the strain is discontinuous having isothermal jumps
inside the profile layer.

The limit of the non-viscous, heat conducting profile layer (θ̂(ξ ), ε̂(ξ );0, κ̄), as κ → 0 has the following
properties. The strain profile is a discontinuous function whose value is ε− for ξ < ξ0 and ε+ for ξ > ξ0,
while the temperature profile is a discontinuous function whose value is θ− for ξ < ξ0, θ r at ξ = ξ0 and θ+

for ξ > ξ0. It should be noted that as µ, κ→ 0 the iterated limits coincide and are equal with the double limit
for any ξ 6= ξ0. The difference appears at ξ = ξ0 where the iterated limits do not coincide more.

The case s′(ε±) = 0, i.e. when Ṡ2 = λ 2(ε±,θ±), can be treated as in the previous cases. The reverse
implication that the chord criterion is also a necessary condition for the existence of a connecting orbit and its
uniqueness can be also proved. We omit here the details.

Let us consider the case when θ r > θ+ in Fig. 7. This means that for any temperature θ̄ ∈ (θ ∗,θ+) the
isotherm σ = σeq(ε, θ̄) intersects the Rayleigh line σ = σR(ε) only at a point in the interval (ε−,ε+). Two
phase portraits similar with those illustrated in Figs. 6 are possible, but we disregard here their analysis.

5.2.2 The entropy production in a viscous, thermally conducting profile layer of Maxwell’s type.

Let the pair (ε̂(ξ ; µ,κ), θ̂(ξ ; µ,κ)) be a traveling wave solution of the system (57). According to the entropy
identity (49) and the dissipation relations (34) established for the Maxwellian rate-type material coupled with
the Fourier heat conduction law it follows that the total entropy production in a profile layer is given by

Ptrav
Mxw = −Ṡ

∫
∞

−∞

( (E−ρ Ṡ2)
θ̂

ρ
∂ψMxw(ε̂,σR(ε̂), θ̂)

∂σ
ε̂
′+

1
θ̂ 2

HMxw(ε̂, θ̂)θ̂ ′
)

dξ =

= −Ṡ
∫

Γ

(E−ρ Ṡ2)
θ

ρ
∂ψMxw(ε,σR(ε),θ)

∂σ
dε +

1
θ 2 HMxw(ε,θ)dθ ≥ 0, (112)

where Γ = {(ε̂(ξ ; µ,κ), θ̂(ξ ; µ,κ)) | ξ ∈ (−∞,∞) } is the continuous piece-wise smooth curve connecting
(ε−,θ−) and (ε+,θ+) in the ε − θ plane. Let us note that, by using relation (33)1, we can prove that the
integrand is a total differential. Moreover, one can show that

Ptrav
Mxw =−Ṡ

∫
Γ

d
(
− HMxw(ε,θ)

θ
+ρηMxw(ε,σR(ε),θ)

)
=−Ṡρ

(
ηeq(ε+,θ+)−ηeq(ε−,θ−)

)
≥ 0 (113)

Therefore, the total entropy production in a profile layer does not depend on viscosity or heat conductivity. It
is just the entropy production (24) induced by a thermoelastic sharp discontinuity compatible with the second
law. As a consequence, in a profile layer structured by Maxwellian viscosity and heat conductivity the entropy
of the Hugoniot state (ε−,θ−) is never less than the entropy of the initial state (ε+,θ+). Therefore, a strong
discontinuity which satisfies the selection criterion generated by the Maxwellian rate-type approach coupled
with Fourier heat conduction law is compatible with the second law of thermodynamics.

5.2.3 The entropy variation inside a profile layer.

Let us denote by θ = θ̂(ε; µ,κ) the trajectory in the ε−θ plane of the Maxwellian viscous, heat conducting
traveling wave solution of the problem (57). By using the thermodynamic properties established in Sect. 4.1
and relation (89) one gets that, if the strain profile ε = ε̂(ξ ; µ,κ) is strictly monotone, the entropy along this
trajectory, denoted by η = η̂(ε; µ,κ)≡ ηMxw(ε,σR(ε), θ̂(ε; µ,κ)), satisfies relation

ρ
dη̂(ε; µ,κ)

dε
=

ρCMxw(ε,σR(ε), θ̂(ε))
θ̂(ε)

dθ̂(ε)
dε
−

(
E−ρ Ṡ2

)
(
E− ∂σeq

∂ε
(ε̃, θ̂(ε))

) ∂σeq

∂θ
(ε̃, θ̂(ε)), (114)
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for ε between ε− and ε+, where ε̃(ε) is the unique solution of equation (98) and dθ̂

dε
= µ(E−ρ Ṡ2)Ṡ2

κE
HMxw(ε,θ̂)

R(ε,θ̂)
.

Notice that if θ = θ̂(ε; µ,κ) is the trajectory in the ε − θ plane of the Kelvin-Voigt viscous, heat con-
ducting traveling wave solution of the problem (60), then the entropy variation along this trajectory, denoted
η = η̂(ε; µ,κ)≡ ηeq(ε, θ̂(ε; µ,κ)), can be obtained by simply making E −→∞ in (114) and satisfies relation

ρ
dη̂(ε; µ,κ)

dε
=

ρCeq(ε, θ̂(ε))
θ̂(ε)

(dθ̂(ε)
dε
−

θ̂(ε)
∂σeq
∂θ

(ε, θ̂(ε))

ρCeq(ε, θ̂(ε))

)
, (115)

for ε between ε− and ε+, where dθ̂

dε
= µ Ṡ2

κ

HKV (ε,θ̂)
R(ε,θ̂)

.
It is interesting to note that according to (115) the entropy for the Kelvin-Voigt model has a maximum

or a minimum inside the profile layer whenever the trajectory θ = θ̂(ε; µ,κ) is tangent to the isentrope (15)
crossing it.

a) Monotonous variation of the entropy inside a viscous, heat non-conducting profile layer. We have seen
that for fixed µ = µ̄ and κ → 0, ε̂(ξ ; µ̄,κ) and θ̂(ξ ; µ̄,κ) approach the solution of the reduced system (66),
which describes a viscous, heat non-conducting profile layer, and the curves θ = θ̂(ε; µ̄,κ) are increasingly
close to the curve θ = ΘMxw(ε). Therefore, by making κ → 0 in relation (114) and taking into account that

limκ→0 θ̂(ε; µ̄,κ) =ΘMxw(ε) and limκ→0
dθ̂(ε;µ̄,κ)

dε
= dΘMxw(ε)

dε
, at the points where the derivative makes sense,

we obtain by using relation (97) that

ρ
dη̂(ε; µ,0)

dε
=

(E−ρ Ṡ2)
E

(σR(ε)−σeq(ε̃,ΘMxw(ε)))
ΘMxw(ε)

, (116)

where ε̃(ε) is given by relation (98). One observes that this relation is just relation (72) established when
investigating the entropy production in a viscous, heat non-conducting profile layer of Maxwell’s type. It
reduces to (81) for profile layers of Kelvin-Voigt’s type.

It is obvious now that for the compressive case, when ε− < ε+, the chord condition (95) requires that the
entropy η = η̂(ε; µ̄,0) in a viscous, heat non-conducting profile layer has to be a strictly decreasing function
of ε , while for the expansive case, ε+ < ε−, it has to be a strictly increasing function of ε .

By using continuity arguments, we expect that this property of monotonicity of the entropy inside a profile
layer remains valid when the viscosity effect largely dominates the heat conductivity effect.

b) Non-monotonous variation of the entropy inside a non-viscous, heat conducting profile layer. We show
now that when the heat conductivity effect largely dominates the viscosity effect the variation of the entropy
η = η̂(ξ ), for ξ ∈ (−∞,∞), is non-monotone and even more its value can become inside the profile layer
lower than the front state value η+ and/or larger than Hugoniot back state value η− > η+. This phenomenon
of entropy overshoot or undershoot has been mentioned for instance by Landau and Lifschitz [19, Chap. IX,
§87] in gas dynamics and by Dunn and Fosdick [6] in thermoelastic materials.

We remind that for fixed κ = κ̄ and µ → 0 the pair ε̂(ξ ; µ, κ̄) and θ̂(ξ ; µ, κ̄) approach the solution of
the reduced system (104), which describes a non-viscous, heat conducting profile layer, and its trajectory in
the ε − θ plane, θ = θ̂(ε; µ̄,κ) is increasingly close to the curve θ = Θ̄R(ε) defined by (105), or by (111),
depending on the monotonicity of the function θ = ΘR(ε). Therefore, by making µ→ 0 in relation (114) and

taking into account that limµ→0 θ̂(ε; µ, κ̄) = Θ̄R(ε), and limµ→0
dθ̂(ε;µ,κ̄)

dε
= dΘ̄R(ε)

dε
, at the points where the

derivative makes sense, we obtain

ρ
dη̂(ε;0, κ̄)

dε
=

ρCMxw(ε,σR(ε),Θ̄R(ε))
Θ̄R(ε)

dΘ̄R(ε)
dε

−
(E−ρ Ṡ2)

∂σeq
∂θ

(ε̃,Θ̄R(ε))(
E− ∂σeq

∂ε
(ε̃,Θ̄R(ε))

) (117)

where ε̃(ε) is the unique solution of equation (37) for σ = σR(ε) and θ = Θ̄R(ε).
Let us note that, according to the definition (105), or (111) of function θ = Θ̄R(ε), the expression of dΘ̄R(ε)

dε

is given by relation (101) on the open intervals on which Θ̄R(ε)≡ΘR(ε), or dΘ̄R(ε)
dε

= 0 on the open intervals
on which Θ̄R(ε) 6= ΘR(ε), i.e. on the intervals on which Θ̄R(ε) is constant.
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We are interested to calculate the expression of (117) at ε = ε±. By using relation (101) at the critical
points (ε±,θ±) one gets

ρ
dη̂(ε±;0, κ̄)

dε
=


ρ2Ceq(ε±,θ±)

(
Ṡ2−λ 2(ε±,θ±)

)
θ±

∂σeq
∂θ

(ε±,θ±)
, if dΘ̄R(ε±)

dε
6= 0,

− (E−ρ Ṡ2)(
E−

∂σeq
∂ε

(ε±,θ±)
) ∂σeq

∂θ
(ε±,θ±), if dΘ̄R(ε±)

dε
= 0.

(118)

where λ (ε,θ) is according to (19) the sound speed of the adiabatic thermoelastic system.
Let us consider for illustration the case C3, when ∂σeq

∂θ
(ε+,θ+) > 0, ∂σeq

∂θ
(ε−,θ−) < 0 and the phase

portrait is illustrated in Fig. 7. We have already established that in this case dΘR(ε+)
dε

< 0 and Ṡ2−λ 2(ε+,θ+)≥
0, since (ε+,θ+) is an attractive node. One gets from (118)1 that η̂ ′(ε+;0, κ̄) > 0. At the critical point
(ε−,θ−) where S2 − λ 2(ε−,θ−) ≤ 0 we have two possibilities concerning the value of dΘR(ε−)

dε
. First, if

dΘR(ε−)
dε

> 0, like in Fig. 7, then dΘ̄R(ε−)
dε

= 0 and according to (118)2 it results that η̂ ′(ε−;0, κ̄) > 0. Second,

if dΘR(ε−)
dε

= dΘ̄R(ε−)
dε

< 0, then according to (118)1 it follows that η̂ ′(ε−;0, κ̄) > 0.
Therefore, the entropy η = η̂(ε;0,κ), ε ∈ (ε−,ε+), is an increasing function of ε in the neighborhoods of

ε− and ε+, ε− < ε+. Since η− = η̂(ε−;0,κ) > η+ = η̂(ε+;0,κ) it results that the entropy in a neighborhood
of ε−, for ε > ε− is larger than the back state entropy η− and its value in the neighborhood of ε+, for ε < ε+

is lower than the front state entropy η+. As a result, the entropy has inside the profile layer an interior absolute
maxima which overshoots the Hugoniot back state entropy η− and an absolute minima which undershoots
the front state entropy η+.

In a similar way one shows that in case C1 the entropy inside a non-viscous, heat conducting profile layer
overshoots the back state entropy η−>η+ and in case C2 the entropy undershoots the front state entropy η+.

By using continuity arguments one gets that the non-monotonous variation of the entropy and the phe-
nomena of entropy overshoot and entropy undershoot also occur when the heat conductivity effect dominates
the viscosity effect.

6 Summary

We consider that knowledge of temperature variation is critical in studies of phase transition phenomena
and that the transition from one stable phase to another does not occur instantaneously. For that reason we
introduce a dissipative mechanism governed by a Maxwellian rate-type constitutive equation and by heat
conduction. The equilibrium of this model is described by a thermoelastic relation with the typical feature
that the Grüneisen coefficient changes its sign. The thermodynamic properties of the Maxwellian model are
systematically used in investigating the existence, uniqueness and the structure of shock and interphase layers.

We show how steady profiles reflect, on one side, the exothermic or endothermic character of phase tran-
sitions, and on the other side, the effect of dissipative mechanisms. It is emphasized that the variation of the
temperature inside a viscous, heat non-conducting profile layers results from a balance between the cool-
ing/heating effect due to the latent heat, and the heating effect due to the intrinsic dissipation. Based on this
observation additional constitutive assumptions are discussed for phase transforming materials.

For a M + →M− impact induced phase transformation, when the sign of the Grüneisen coefficient
changes inside the layer, the temperature variation has a spike-layer form. Therefore, the experimental detec-
tion that a particle, during the passage of a wave, can experience lower or larger temperatures than that at its
front state and back state could provide valuable information on the presence of an interphase layer and on
the time of transition between phases.

We also discuss when the chord criterion with respect to the Hugoniot locus in the strain-stress space is
a necessary and sufficient condition for the existence of a profile layer and its role as admissibility condition
for discontinuous solutions of the adiabatic thermoelastic system.

The profound difference in the effect of viscosity and of heat conduction on the structure of the profile
layers (possible existence of isothermal jumps inside a profile layer) and on the behavior of the entropy inside
the profile layer (the phenomenon of entropy overshoot, or undershoot) have been discussed.
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